7,299 research outputs found

    CP^1+U(1) Lattice Gauge Theory in Three Dimensions: Phase Structure, Spins, Gauge Bosons, and Instantons

    Full text link
    In this paper we study a 3D lattice spin model of CP1^1 Schwinger-bosons coupled with dynamical compact U(1) gauge bosons. The model contains two parameters; the gauge coupling and the hopping parameter of CP1^1 bosons. At large (weak) gauge couplings, the model reduces to the classical O(3) (O(4)) spin model with long-range and/or multi-spin interactions. It is also closely related to the recently proposed "Ginzburg-Landau" theory for quantum phase transitions of s=1/2s=1/2 quantum spin systems on a 2D square lattice at zero temperature. We numerically study the phase structure of the model by calculating specific heat, spin correlations, instanton density, and gauge-boson mass. The model has two phases separated by a critical line of second-order phase transition; O(3) spin-ordered phase and spin-disordered phase. The spin-ordered phase is the Higgs phase of U(1) gauge dynamics, whereas the disordered phase is the confinement phase. We find a crossover in the confinement phase which separates dense and dilute regions of instantons. On the critical line, spin excitations are gapless, but the gauge-boson mass is {\it nonvanishing}. This indicates that a confinement phase is realized on the critical line. To confirm this point, we also study the noncompact version of the model. A possible realization of a deconfinement phase on the criticality is discussed for the CPN^N+U(1) model with larger NN.Comment: Discussion of finite size scaling, O(4) spin correlation adde

    Beyond homozygosity mapping: family-control analysis based on Hamming distance for prioritizing variants in exome sequencing

    Get PDF
    A major challenge in current exome sequencing in autosomal recessive (AR) families is the lack of an effective method to prioritize single-nucleotide variants (SNVs). AR families are generally too small for linkage analysis, and length of homozygous regions is unreliable for identification of causative variants. Various common filtering steps usually result in a list of candidate variants that cannot be narrowed down further or ranked. To prioritize shortlisted SNVs we consider each homozygous candidate variant together with a set of SNVs flanking it. We compare the resulting array of genotypes between an affected family member and a number of control individuals and argue that, in a family, differences between family member and controls should be larger for a pathogenic variant and SNVs flanking it than for a random variant. We assess differences between arrays in two individuals by the Hamming distance and develop a suitable test statistic, which is expected to be large for a causative variant and flanking SNVs. We prioritize candidate variants based on this statistic and applied our approach to six patients with known pathogenic variants and found these to be in the top 2 to 10 percentiles of ranks

    Flexible control of the Peierls transition in metallic C60_{60} polymers

    Full text link
    The metal-semiconductor transition of peanut-shaped fullerene (C60_{60}) polymers is clarified by considering the electron-phonon coupling in the uneven structure of the polymers. We established a theory that accounts for the transition temperature TcT_c reported in a recent experiment and also suggests that TcT_c is considerably lowered by electron doping or prolonged irradiation during synthesis. The decrease in TcT_c is an appealing phenomenon with regard to realizing high-conductivity C60_{60}-based nanowires even at low temperatures.Comment: 3 pages, 3 figure

    Pressure-induced enhancement of superconductivity and superconducting-superconducting transition in CaC_6\_6

    Get PDF
    We measured the electrical resistivity, ϱ(T)\varrho(T), of superconducting CaC_6\_6 at ambient and high pressure up to 16 GPa. For PP \leq8 GPa, we found a large increase of T_cT\_c with pressure from 11.5 up to 15.1 K. At 8 GPa, T_cT\_c drops and levels off at 5 K above 10 GPa. Correspondingly, the residual ϱ\varrho increases by \approx 200 times and the ϱ(T)\varrho(T) behavior becomes flat. The recovery of the pristine behavior after depressurization is suggestive of a phase transition at 8 GPa between two superconducting phases with good and bad metallic properties, the latter with a lower T_cT\_c and more static disorder

    Orientation Characteristics of Non-regiocontrolled Poly (3-hexyl-thiophene) Film by FTM on Various Liquid Substrates

    Get PDF
    Orientation characteristics of non-regiocontrolled poly (3-hexylthiophene) (NR-P3HT) films prepared by dynamic casting of floating film and transferring method (FTM) has been investigated. The film was first cast on liquid-substrate to obtain as a floating-film followed by its transfer on solid-substrate such as white-glass or Si-wafer in order to evaluate their optoelectronic characteristics. As a possible key-factor to generate the orientation of conjugated polymer in this method we focused on the components of liquid-substrate in this study. The orientation dependence upon various liquid-substrates reveals that dichroic ratio strongly changes with liquid-substrates. Pictures of floating-film show the change in size of floating-parts depending upon the liquid-substrate, representing the expansion length of casting solution upon the viscosity. These findings have indicated that spreading speed of polymer solution and solvent evaporation speed controls the size of floating-film leading to change in the orientation intensity. The multilayer coatings of oriented NR-P3HT films were used for polarized FTIR analysis exhibiting clear dichroism. The obtained dichroic characteristics were well corresponded with in-plane, out-of-plane and non-oriented vibronic modes of P3HT.India-Japan Expert Group Meeting on Biomolecular Electronics & Organic Nanotechnology for Environment Preservation (IJEGMBE 2015), December 23-26, 2015, Fukuoka, Japa

    Fulde-Ferrell-Larkin-Ovchinnikov state in a perpendicular field of quasi two-dimensional CeCoIn5

    Get PDF
    A Fulde-Ferrell-Larkin-Ovchinnkov (FFLO) state was previously reported in the quasi-2D heavy fermion CeCoIn5 when a magnetic field was applied parallel to the ab-plane. Here, we conduct 115^In NMR studies of this material in a PERPENDICULAR field, and provide strong evidence for FFLO in this case as well. Although the topology of the phase transition lines in the H-T phase diagram is identical for both configurations, there are several remarkable differences between them. Compared to H//ab, the FFLO region for H perpendicular to the ab-plane shows a sizable decrease, and the critical field separating the FFLO and non-FFLO superconducting states almost ceases to have a temperature dependence. Moreover, directing H perpendicular to the ab-plane results in a notable change in the quasiparticle excitation spectrum within the planar node associated with the FFLO transition.Comment: 5 pages, 3 figure

    Solvated dissipative electro-elastic network model of hydrated proteins

    Full text link
    Elastic netwok models coarse grain proteins into a network of residue beads connected by springs. We add dissipative dynamics to this mechanical system by applying overdamped Langevin equations of motion to normal-mode vibrations of the network. In addition, the network is made heterogeneous and softened at the protein surface by accounting for hydration of the ionized residues. Solvation changes the network Hessian in two ways. Diagonal solvation terms soften the spring constants and off-diagonal dipole-dipole terms correlate displacements of the ionized residues. The model is used to formulate the response functions of the electrostatic potential and electric field appearing in theories of redox reactions and spectroscopy. We also formulate the dielectric response of the protein and find that solvation of the surface ionized residues leads to a slow relaxation peak in the dielectric loss spectrum, about two orders of magnitude slower than the main peak of protein relaxation. Finally, the solvated network is used to formulate the allosteric response of the protein to ion binding. The global thermodynamics of ion binding is not strongly affected by the network solvation, but it dramatically enhances conformational changes in response to placing a charge at the active site of the protein

    Casting Control of Floating-films into Ribbon-shape Structure by modified Dynamic FTM

    Get PDF
    We have developed a new method to obtain Ribbon-shaped floating films via dynamic casting of floating-film and transfer method (dynamic-FTM). Dynamic-FTM is a unique method to prepare oriented thin-film of conjugated polymers (CPs) which is quick and easy. This method has several advantages as compared to the other conventional casting procedure to prepare oriented CP films. In the conventional dynamic FTM appearance of large scale circular orientation poses difficulty not only for practical applications but also hinders the detailed analysis of the orientation mechanism. In this present work, pros and cons of this newly proposed ribbon-shaped floating-film have been discussed in detail from those of the conventional floating-film prepared by dynamic-FTM.12th International Conference on Nanomolecular Electronics (ICNME-2016), December 14-16, 2016, Kobe International Conference Center, Kobe, Japa
    corecore