1,325 research outputs found

    Branes at Quantum Criticality

    Full text link
    In this paper we propose new non-relativistic p+1 dimensional theory. This theory is defined in such a way that the potential term obeys the principle of detailed balance where the generating action corresponds to p-brane action. This condition ensures that the norm of the vacuum wave functional of p+1 dimensional theory is equal to the partition function of p-brane theory.Comment: 17 pages, references added, typos fixed,v2. minor change

    Jet color chemistry and anomalous baryon production in AAAA-collisions

    Full text link
    We study anomalous high-pTp_T baryon production in AAAA-collisions due to formation of the two parton collinear gqgq system in the anti-sextet color state for quark jets and gggg system in the decuplet/anti-decuplet color states for gluon jets. Fragmentation of these states, which are absent for NNNN-collisions, after escaping from the quark-gluon plasma leads to baryon production. Our qualitative estimates show that this mechanism can be potentially important at RHIC and LHC energies.Comment: 20 pages, 4 figures, Eur.Phys.J. versio

    Cold Plasma Wave Analysis in Magneto-Rotational Fluids

    Full text link
    This paper is devoted to investigate the cold plasma wave properties. The analysis has been restricted to the neighborhood of the pair production region of the Kerr magnetosphere. The Fourier analyzed general relativistic magnetohydrodynamical equations are dealt under special circumstances and dispersion relations are obtained. We find the xx-component of the complex wave vector numerically. The corresponding components of the propagation vector, attenuation vector, phase and group velocities are shown in graphs. The direction and dispersion of waves are investigated.Comment: 22 pages, 18 figures, accepted for publication in Astrophys. Space Sc

    The Kuiper Belt and Other Debris Disks

    Full text link
    We discuss the current knowledge of the Solar system, focusing on bodies in the outer regions, on the information they provide concerning Solar system formation, and on the possible relationships that may exist between our system and the debris disks of other stars. Beyond the domains of the Terrestrial and giant planets, the comets in the Kuiper belt and the Oort cloud preserve some of our most pristine materials. The Kuiper belt, in particular, is a collisional dust source and a scientific bridge to the dusty "debris disks" observed around many nearby main-sequence stars. Study of the Solar system provides a level of detail that we cannot discern in the distant disks while observations of the disks may help to set the Solar system in proper context.Comment: 50 pages, 25 Figures. To appear in conference proceedings book "Astrophysics in the Next Decade

    Current Status of Simulations

    Full text link
    As the title suggests, the purpose of this chapter is to review the current status of numerical simulations of black hole accretion disks. This chapter focuses exclusively on global simulations of the accretion process within a few tens of gravitational radii of the black hole. Most of the simulations discussed are performed using general relativistic magnetohydrodynamic (MHD) schemes, although some mention is made of Newtonian radiation MHD simulations and smoothed particle hydrodynamics. The goal is to convey some of the exciting work that has been going on in the past few years and provide some speculation on future directions.Comment: 15 pages, 14 figures, to appear in the proceedings of the ISSI-Bern workshop on "The Physics of Accretion onto Black Holes" (8-12 October 2012

    Extremal black holes in the Ho\v{r}ava-Lifshitz gravity

    Full text link
    We study the near-horizon geometry of extremal black holes in the z=3z=3 Ho\v{r}ava-Lifshitz gravity with a flow parameter λ\lambda. For λ>1/2\lambda>1/2, near-horizon geometry of extremal black holes are AdS2×S2_2 \times S^2 with different radii, depending on the (modified) Ho\v{r}ava-Lifshitz gravity. For 1/3≤λ≤1/21/3\le \lambda \le 1/2, the radius v2v_2 of S2S^2 is negative, which means that the near-horizon geometry is ill-defined and the corresponding Bekenstein-Hawking entropy is zero. We show explicitly that the entropy function approach does not work for obtaining the Bekenstein-Hawking entropy of extremal black holes.Comment: 18 pages, v2:some points on Lifshitz black holes claified, v3: version to appear in EJP

    Gravitational deflection of light in Rindler-type potential as a possible resolution to the observations of Bullet Cluster 1E0657-558

    Full text link
    The surface density Σ\Sigma-map and the convergence κ\kappa-map of Bullet Cluster 1E0657-558 show that the center of baryonic matters separates from the center of gravitational force, and the distribution of gravitational force do not possess spherical symmetry. This hints that a modified gravity with difference to Newtonian inverse-square law at large scale, and less symmetry is worth investigating. In this paper, we study the dynamics in Randers-Finsler spacetime. The Newtonian limit and gravitational deflection of light in a Rindler-type potential is focused in particular. It is shown that the convergence in Finsler spacetime could account for the observations of Bullet Cluster.Comment: 11 page

    Two-Particle-Self-Consistent Approach for the Hubbard Model

    Full text link
    Even at weak to intermediate coupling, the Hubbard model poses a formidable challenge. In two dimensions in particular, standard methods such as the Random Phase Approximation are no longer valid since they predict a finite temperature antiferromagnetic phase transition prohibited by the Mermin-Wagner theorem. The Two-Particle-Self-Consistent (TPSC) approach satisfies that theorem as well as particle conservation, the Pauli principle, the local moment and local charge sum rules. The self-energy formula does not assume a Migdal theorem. There is consistency between one- and two-particle quantities. Internal accuracy checks allow one to test the limits of validity of TPSC. Here I present a pedagogical review of TPSC along with a short summary of existing results and two case studies: a) the opening of a pseudogap in two dimensions when the correlation length is larger than the thermal de Broglie wavelength, and b) the conditions for the appearance of d-wave superconductivity in the two-dimensional Hubbard model.Comment: Chapter in "Theoretical methods for Strongly Correlated Systems", Edited by A. Avella and F. Mancini, Springer Verlag, (2011) 55 pages. Misprint in Eq.(23) corrected (thanks D. Bergeron

    The long-term survival chances of young massive star clusters

    Full text link
    We review the long-term survival chances of young massive star clusters (YMCs), hallmarks of intense starburst episodes often associated with violent galaxy interactions. We address the key question as to whether at least some of these YMCs can be considered proto-globular clusters (GCs), in which case these would be expected to evolve into counterparts of the ubiquitous old GCs believed to be among the oldest galactic building blocks. In the absence of significant external perturbations, the key factor determining a cluster's long-term survival chances is the shape of its stellar initial mass function (IMF). It is, however, not straightforward to assess the IMF shape in unresolved extragalactic YMCs. We discuss in detail the promise of using high-resolution spectroscopy to make progress towards this goal, as well as the numerous pitfalls associated with this approach. We also discuss the latest progress in worldwide efforts to better understand the evolution of entire cluster systems, the disruption processes they are affected by, and whether we can use recently gained insights to determine the nature of at least some of the YMCs observed in extragalactic starbursts as proto-GCs. We conclude that there is an increasing body of evidence that GC formation appears to be continuing until today; their long-term evolution crucially depends on their environmental conditions, however.Comment: invited refereed review article; ChJA&A, in press; 33 pages LaTeX (2 postscript figures); requires chjaa.cls style fil

    Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays

    Full text link
    Average charged multiplicities have been measured separately in bb, cc and light quark (u,d,su,d,s) events from Z0Z^0 decays measured in the SLD experiment. Impact parameters of charged tracks were used to select enriched samples of bb and light quark events, and reconstructed charmed mesons were used to select cc quark events. We measured the charged multiplicities: nˉuds=20.21±0.10(stat.)±0.22(syst.)\bar{n}_{uds} = 20.21 \pm 0.10 (\rm{stat.})\pm 0.22(\rm{syst.}), nˉc=21.28±0.46(stat.)−0.36+0.41(syst.)\bar{n}_{c} = 21.28 \pm 0.46(\rm{stat.}) ^{+0.41}_{-0.36}(\rm{syst.}) nˉb=23.14±0.10(stat.)−0.37+0.38(syst.)\bar{n}_{b} = 23.14 \pm 0.10(\rm{stat.}) ^{+0.38}_{-0.37}(\rm{syst.}), from which we derived the differences between the total average charged multiplicities of cc or bb quark events and light quark events: Δnˉc=1.07±0.47(stat.)−0.30+0.36(syst.)\Delta \bar{n}_c = 1.07 \pm 0.47(\rm{stat.})^{+0.36}_{-0.30}(\rm{syst.}) and Δnˉb=2.93±0.14(stat.)−0.29+0.30(syst.)\Delta \bar{n}_b = 2.93 \pm 0.14(\rm{stat.})^{+0.30}_{-0.29}(\rm{syst.}). We compared these measurements with those at lower center-of-mass energies and with perturbative QCD predictions. These combined results are in agreement with the QCD expectations and disfavor the hypothesis of flavor-independent fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters
    • …
    corecore