54 research outputs found

    One-Step Conversion of Glutamic Acid into 2-Pyrrolidone on a Supported Ru Catalyst in a Hydrogen Atmosphere: Remarkable Effect of CO Activation

    Get PDF
    Glutamic acid, an abundant nonessential amino acid, was converted into 2-pyrrolidone in the presence of a supported Ru catalyst under a pressurized hydrogen atmosphere. This reaction pathway proceeded through the dehydration of glutamic acid into pyroglutamic acid, subsequent hydrogenation, and the dehydrogenation–decarbonylation of pyroglutaminol into 2-pyrrolidone. In the conversion of pyroglutaminol, Ru/Al2O3 exhibited notably higher activity than supported Pt, Pd, and Rh catalysts. IR analysis revealed that Ru can hydrogenate the formed CO through dehydrogenation–decarbonylation of hydroxymethyl groups in pyroglutaminol and can also easily desorb CH4 from the active sites on Ru. Furthermore, Ru/Al2O3 showed the highest catalytic activity among the tested catalysts in the conversion of pyroglutamic acid. Consequently, the conversion of glutamic acid produced a high yield of 2-pyrrolidone by using the supported Ru catalyst. This is the first report of this one-pot reaction under mild reaction conditions (433 K, 2 MPa H2)„ which avoids the degradation of unstable amino acids above 473 K

    Effect of SARS-CoV-2 BNT162b2 mRNA vaccine on thyroid autoimmunity: A twelve-month follow-up study

    Get PDF
    ObjectivesGraves’ disease (GD) has been highlighted as a possible adverse effect of the respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccine. However, it is unknown if the SARS-CoV-2 vaccine disrupts thyroid autoimmunity. We aimed to present long-term follow-up of thyroid autoimmunity after the SARS-CoV-2 BNT162b2 mRNA vaccine.MethodsSerum samples collected from seventy Japanese healthcare workers at baseline, 32 weeks after the second dose (pre-third dose), and 4 weeks after the third dose of the vaccine were analyzed. The time courses of anti-SARS-CoV-2 spike immunoglobulin G (IgG) antibody, thyroid-stimulating hormone receptor antibody (TRAb), and thyroid function were evaluated. Anti-thyroglobulin antibodies (TgAb) and anti-thyroid peroxidase antibodies (TPOAb) were additionally evaluated in thirty-three participants.ResultsThe median age was 50 (IQR, 38-54) years and 69% were female. The median anti-spike IgG antibody titer was 17627 (IQR, 10898-24175) U/mL 4 weeks after the third dose. The mean TRAb was significantly increased from 0.81 (SD, 0.05) IU/L at baseline to 0.97 (SD, 0.30) IU/L 4 weeks after the third dose without functional changes. An increase in TRAb was positively associated with female sex (β = 0.32, P = 0.008) and low basal FT4 (β = -0.29, P = 0.02) and FT3 (β = -0.33, P = 0.004). TgAb was increased by the third dose. Increase in TgAb was associated with history of the thyroid diseases (β = 0.55, P <0.001).ConclusionsSARS-CoV-2 BNT162b2 mRNA vaccine can disrupt thyroid autoimmunity. Clinicians should consider the possibility that the SARS-CoV-2 vaccine may disrupt thyroid autoimmunity

    Establishment of infectious HCV virion-producing cells with newly designed full-genome replicon RNA

    Get PDF
    Hepatitis C virus (HCV) replicon systems enable in-depth analysis of the life cycle of HCV. However, the previously reported full-genome replicon system is unable to produce authentic virions. On the basis of these results, we constructed newly designed full-genomic replicon RNA, which is composed of the intact 5′-terminal-half RNA extending to the NS2 region flanked by an extra selection marker gene. Huh-7 cells harboring this full-genomic RNA proliferated well under G418 selection and secreted virion-like particles into the supernatant. These particles, which were round and 50 nm in diameter when analyzed by electron microscopy, had a buoyant density of 1.08 g/mL that shifted to 1.19 g/mL after NP-40 treatment; these figures match the putative densities of intact virions and nucleocapsids without envelope. The particles also showed infectivity in a colony-forming assay. This system may offer another option for investigating the life cycle of HCV

    An attenuated vaccinia vaccine encoding the severe acute respiratory syndrome coronavirus-2 spike protein elicits broad and durable immune responses, and protects cynomolgus macaques and human angiotensin-converting enzyme 2 transgenic mice from severe acute respiratory syndrome coronavirus-2 and its variants

    Get PDF
    As long as the coronavirus disease-2019 (COVID-19) pandemic continues, new variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) with altered antigenicity will emerge. The development of vaccines that elicit robust, broad, and durable protection against SARS-CoV-2 variants is urgently required. We have developed a vaccine consisting of the attenuated vaccinia virus Dairen-I (DIs) strain platform carrying the SARS-CoV-2 S gene (rDIs-S). rDIs-S induced neutralizing antibody and T-lymphocyte responses in cynomolgus macaques and human angiotensin-converting enzyme 2 (hACE2) transgenic mice, and the mouse model showed broad protection against SARS-CoV-2 isolates ranging from the early-pandemic strain (WK-521) to the recent Omicron BA.1 variant (TY38-873). Using a tandem mass tag (TMT)-based quantitative proteomic analysis of lung homogenates from hACE2 transgenic mice, we found that, among mice subjected to challenge infection with WK-521, vaccination with rDIs-S prevented protein expression related to the severe pathogenic effects of SARS-CoV-2 infection (tissue destruction, inflammation, coagulation, fibrosis, and angiogenesis) and restored protein expression related to immune responses (antigen presentation and cellular response to stress). Furthermore, long-term studies in mice showed that vaccination with rDIs-S maintains S protein-specific antibody titers for at least 6 months after a first vaccination. Thus, rDIs-S appears to provide broad and durable protective immunity against SARS-CoV-2, including current variants such as Omicron BA.1 and possibly future variants
    corecore