614 research outputs found
Asymmetric multisensory interactions of visual and somatosensory responses in a region of the rat parietal cortex
Perception greatly benefits from integrating multiple sensory cues into a unified percept. To study the neural mechanisms of sensory integration, model systems are required that allow the simultaneous assessment of activity and the use of techniques to affect individual neural processes in behaving animals. While rodents qualify for these requirements, little is known about multisensory integration and areas involved for this purpose in the rodent. Using optical imaging combined with laminar electrophysiological recordings, the rat parietal cortex was identified as an area where visual and somatosensory inputs converge and interact. Our results reveal similar response patterns to visual and somatosensory stimuli at the level of current source density (CSD) responses and multi-unit responses within a strip in parietal cortex. Surprisingly, a selective asymmetry was observed in multisensory interactions: when the somatosensory response preceded the visual response, supra-linear summation of CSD was observed, but the reverse stimulus order resulted in sub-linear effects in the CSD. This asymmetry was not present in multi-unit activity however, which showed consistently sub-linear interactions. These interactions were restricted to a specific temporal window, and pharmacological tests revealed significant local intra-cortical contributions to this phenomenon. Our results highlight the rodent parietal cortex as a system to model the neural underpinnings of multisensory processing in behaving animals and at the cellular level
Magnetic Properties of 2-Dimensional Dipolar Squares: Boundary Geometry Dependence
By means of the molecular dynamics simulation on gradual cooling processes,
we investigate magnetic properties of classical spin systems only with the
magnetic dipole-dipole interaction, which we call dipolar systems. Focusing on
their finite-size effect, particularly their boundary geometry dependence, we
study two finite dipolar squares cut out from a square lattice with
and , where is an angle between the direction of the lattice axis
and that of the square boundary. Distinctly different results are obtained in
the two dipolar squares. In the square, the ``from-edge-to-interior
freezing'' of spins is observed. Its ground state has a multi-domain structure
whose domains consist of the two among infinitely (continuously) degenerated
Luttinger-Tisza (LT) ground-state orders on a bulk square lattice, i.e., the
two antiferromagnetically aligned ferromagnetic chains (af-FMC) orders directed
in parallel to the two lattice axes. In the square, on the other
hand, the freezing starts from the interior of the square, and its ground state
is nearly in a single domain with one of the two af-FMC orders. These geometry
effects are argued to originate from the anisotropic nature of the
dipole-dipole interaction which depends on the relative direction of sites in a
real space of the interacting spins.Comment: 21 pages, 13 figures, submitted to Journal of Physical Society Japa
The role of calcium channels in osteocyte function
Abstract Osteocytic response to stretching, which is potentiated by PTH, is distinct from that of osteoblast to high frequency strain. A MAPK dependent signaling pathway is suggested in the osteoblast response. At least two different types of mechanotransduction pathways are present in bone cells of osteoblastic lineage
Ballistic electron transport in stubbed quantum waveguides: experiment and theory
We present results of experimental and theoretical investigations of electron
transport through stub-shaped waveguides or electron stub tuners (ESTs) in the
ballistic regime. Measurements of the conductance G as a function of voltages,
applied to different gates V_i (i=bottom, top, and side) of the device, show
oscillations in the region of the first quantized plateau which we attribute to
reflection resonances. The oscillations are rather regular and almost periodic
when the height h of the EST cavity is small compared to its width. When h is
increased, the oscillations become less regular and broad depressions in G
appear. A theoretical analysis, which accounts for the electrostatic potential
formed by the gates in the cavity region, and a numerical computation of the
transmission probabilities successfully explains the experimental observations.
An important finding for real devices, defined by surface Schottky gates, is
that the resonance nima result from size quantization along the transport
direction of the EST.Comment: Text 20 pages in Latex/Revtex format, 11 Postscript figures. Phys.
Rev. B,in pres
Resonance Patterns of an Antidot Cluster: From Classical to Quantum Ballistics
We explain the experimentally observed Aharonov-Bohm (AB) resonance patterns
of an antidot cluster by means of quantum and classical simulations and Feynman
path integral theory. We demonstrate that the observed behavior of the AB
period signals the crossover from a low B regime which can be understood in
terms of electrons following classical orbits to an inherently quantum high B
regime where this classical picture and semiclassical theories based on it do
not apply.Comment: 5 pages revtex + 2 postscript figure
Magnetic Quantum Dot: A Magnetic Transmission Barrier and Resonator
We study the ballistic edge-channel transport in quantum wires with a
magnetic quantum dot, which is formed by two different magnetic fields B^* and
B_0 inside and outside the dot, respectively. We find that the electron states
located near the dot and the scattering of edge channels by the dot strongly
depend on whether B^* is parallel or antiparallel to B_0. For parallel fields,
two-terminal conductance as a function of channel energy is quantized except
for resonances, while, for antiparallel fields, it is not quantized and all
channels can be completely reflected in some energy ranges. All these features
are attributed to the characteristic magnetic confinements caused by nonuniform
fields.Comment: 4 pages, 4 figures, to be published in Physical Review Letter
Quantum railroads and directed localization at the juncture of quantum Hall systems
The integer quantum Hall effect (QHE) and one-dimensional Anderson
localization (AL) are limiting special cases of a more general phenomenon,
directed localization (DL), predicted to occur in disordered one-dimensional
wave guides called "quantum railroads" (QRR). Here we explain the surprising
results of recent measurements by Kang et al. [Nature 403, 59 (2000)] of
electron transfer between edges of two-dimensional electron systems and
identify experimental evidence of QRR's in the general, but until now entirely
theoretical, DL regime that unifies the QHE and AL. We propose direct
experimental tests of our theory.Comment: 11 pages revtex + 3 jpeg figures, to appear in Phys. Rev.
Readout ASICs and Electronics for the 144-channel HAPDs for the Aerogel RICH at Belle II
AbstractThe particle identification (PID) device in the endcap of the Belle detector will be upgraded to a ring imaging Cherenkov counter (RICH) using aerogel as a radiator at the Belle II experiment. We develop the electronics to read out the 70,000 channels of hit information from the 144-channel hybrid avalanche photodetectors (HAPD), of the aerogel RICH detector. A readout ASIC is developed to digitize the HAPD signals, and was used in a beam test with the prototype detector. The performance and plan of the ASIC is reported in this study. We have also designed the readout electronics for the aerogel RICH, which consist of front-end boards with the ASICs merger boards to collect data from the front-end boards. A front-end board that fits in the actual available space for the aerogel RICH electronics was produced
- …