7 research outputs found

    Fast-neutron-induced fission of

    No full text
    The fast neutron-induced fission cross section of 242Pu was determined in the range of 0.5 MeV to 10 MeV relative to 235U(n,f) at the neutron time-of-flight facility nELBE. The number of target nuclei was calculated by means of measuring the spontaneous fission rate of 242Pu. Neutron transport simulations with Geant4 and MCNP6 are used to correct the relative cross section for neutron scattering. The determined results are in good agreement with current experimental and evaluated data sets

    Fast-neutron-induced fission of 242Pu at nELBE

    No full text
    The fast neutron-induced fission cross section of 242Pu was determined in the range of 0.5 MeV to 10 MeV relative to 235U(n,f) at the neutron time-of-flight facility nELBE. The number of target nuclei was calculated by means of measuring the spontaneous fission rate of 242Pu. Neutron transport simulations with Geant4 and MCNP6 are used to correct the relative cross section for neutron scattering. The determined results are in good agreement with current experimental and evaluated data sets

    Angular distribution measurement of gamma rays from inelastic neutron scattering on 56Fe at the nELBE time-of-flight facility

    No full text
    Inelastic neutron scattering from 56Fe was studied at the nELBE time-of-flight facility. The incoming neutron energy ranges from 100 keV to 10 MeV in the fast neutron spectrum, where high precision nuclear data are needed. A detector setup has been installed to investigate the γ-ray angular distributions. It contains five HPGe and five LaBr3 detectors positioned at 30, 55, 90, 125 and 150 degrees relative to the beam axis. The intrinsic and the neutron induced background from the setup was subtracted by cyclical measurements with and without the natural Fe-target. Corrections for extended source efficiency and gamma-self-absorption, inside the target, were done using GEANT4 simulations. The angular distributions measured with the HPGe detectors are compared with earlier data. High neutron energy resolution up to a few keV was obtained with the LaBr3 detectors due to their much better time resolution

    Angular distribution measurement of gamma rays from inelastic neutron scattering on

    No full text
    Inelastic neutron scattering from 56Fe was studied at the nELBE time-of-flight facility. The incoming neutron energy ranges from 100 keV to 10 MeV in the fast neutron spectrum, where high precision nuclear data are needed. A detector setup has been installed to investigate the γ-ray angular distributions. It contains five HPGe and five LaBr3 detectors positioned at 30, 55, 90, 125 and 150 degrees relative to the beam axis. The intrinsic and the neutron induced background from the setup was subtracted by cyclical measurements with and without the natural Fe-target. Corrections for extended source efficiency and gamma-self-absorption, inside the target, were done using GEANT4 simulations. The angular distributions measured with the HPGe detectors are compared with earlier data. High neutron energy resolution up to a few keV was obtained with the LaBr3 detectors due to their much better time resolution

    Angular distribution measurement of gamma rays from inelastic neutron scattering on 56

    No full text
    Inelastic neutron scattering from 56Fe was studied at the nELBE time-of-flight facility. The incoming neutron energy ranges from 100 keV to 10 MeV in the fast neutron spectrum, where high precision nuclear data are needed. A detector setup has been installed to investigate the γ-ray angular distributions. It contains five HPGe and five LaBr3 detectors positioned at 30, 55, 90, 125 and 150 degrees relative to the beam axis. The intrinsic and the neutron induced background from the setup was subtracted by cyclical measurements with and without the natural Fe-target. Corrections for extended source efficiency and gamma-self-absorption, inside the target, were done using GEANT4 simulations. The angular distributions measured with the HPGe detectors are compared with earlier data. High neutron energy resolution up to a few keV was obtained with the LaBr3 detectors due to their much better time resolution

    Fast-neutron-induced fission of 242

    No full text
    The fast neutron-induced fission cross section of 242Pu was determined in the range of 0.5 MeV to 10 MeV relative to 235U(n,f) at the neutron time-of-flight facility nELBE. The number of target nuclei was calculated by means of measuring the spontaneous fission rate of 242Pu. Neutron transport simulations with Geant4 and MCNP6 are used to correct the relative cross section for neutron scattering. The determined results are in good agreement with current experimental and evaluated data sets

    The neutron transmission of natFe, 197Au and natW

    No full text
    Neutron total cross sections of natFe, 197Au and natW have been measured at the nELBE neutrontime-of- ight facility in the energy range from 0.15 { 8 MeV with an uncertainty due to countingstatistics of up to 2 % and a total uncertainty due to systematic effects of 1 %. The neutrons are produced with the superconducting electron accelerator ELBE using a liquid lead circuit as photo-neutron target. By periodical sample-in-sample-out measurements the transmission of the sample materials has been determined using a low-threshold plastic scintillation detector. The resulting effective total cross sections show good agreement with previously measured data that cover only part of the energy range available at nELBE. The results have also been compared to evaluated library files and recent calculations based on a dispersive coupled channel optical model potential.JRC.G.2-Standards for Nuclear Safety, Security and Safeguard
    corecore