26 research outputs found

    Transcriptional Responses of Herbaspirillum seropedicae to Environmental Phosphate Concentration

    Get PDF
    Herbaspirillum seropedicae is a nitrogen-fixing endophytic bacterium associated with important cereal crops, which promotes plant growth, increasing their productivity. The understanding of the physiological responses of this bacterium to different concentrations of prevailing nutrients as phosphate (Pi) is scarce. In some bacteria, culture media Pi concentration modulates the levels of intracellular polyphosphate (polyP), modifying their cellular fitness. Here, global changes of H. seropedicae SmR1 were evaluated in response to environmental Pi concentrations, based on differential intracellular polyP levels. Cells grown in high-Pi medium (50 mM) maintained high polyP levels in stationary phase, while those grown in sufficient Pi medium (5 mM) degraded it. Through a RNA-seq approach, comparison of transcriptional profiles of H. seropedicae cultures revealed that 670 genes were differentially expressed between both Pi growth conditions, with 57% repressed and 43% induced in the high Pi condition. Molecular and physiological analyses revealed that aspects related to Pi metabolism, biosynthesis of flagella and chemotaxis, energy production, and polyhydroxybutyrate metabolism were induced in the high-Pi condition, while those involved in adhesion and stress response were repressed. The present study demonstrated that variations in environmental Pi concentration affect H. seropedicae traits related to survival and other important physiological characteristics. Since environmental conditions can influence the effectiveness of the plant growth-promoting bacteria, enhancement of bacterial robustness to withstand different stressful situations is an interesting challenge. The obtained data could serve not only to understand the bacterial behavior in respect to changes in rhizospheric Pi gradients but also as a base to design strategies to improve different bacterial features focusing on biotechnological and/or agricultural purposes

    Genome of Herbaspirillum seropedicae Strain SmR1, a Specialized Diazotrophic Endophyte of Tropical Grasses

    Get PDF
    The molecular mechanisms of plant recognition, colonization, and nutrient exchange between diazotrophic endophytes and plants are scarcely known. Herbaspirillum seropedicae is an endophytic bacterium capable of colonizing intercellular spaces of grasses such as rice and sugar cane. The genome of H. seropedicae strain SmR1 was sequenced and annotated by The Paraná State Genome Programme—GENOPAR. The genome is composed of a circular chromosome of 5,513,887 bp and contains a total of 4,804 genes. The genome sequence revealed that H. seropedicae is a highly versatile microorganism with capacity to metabolize a wide range of carbon and nitrogen sources and with possession of four distinct terminal oxidases. The genome contains a multitude of protein secretion systems, including type I, type II, type III, type V, and type VI secretion systems, and type IV pili, suggesting a high potential to interact with host plants. H. seropedicae is able to synthesize indole acetic acid as reflected by the four IAA biosynthetic pathways present. A gene coding for ACC deaminase, which may be involved in modulating the associated plant ethylene-signaling pathway, is also present. Genes for hemagglutinins/hemolysins/adhesins were found and may play a role in plant cell surface adhesion. These features may endow H. seropedicae with the ability to establish an endophytic life-style in a large number of plant species
    corecore