42 research outputs found
Deformation and flow of a two-dimensional foam under continuous shear
We investigate the flow properties of a two-dimensional aqueous foam
submitted to a quasistatic shear in a Couette geometry. A strong localization
of the flow (shear banding) at the edge of the moving wall is evidenced,
characterized by an exponential decay of the average tangential velocity.
Moreover, the analysis of the rapid velocity fluctuations reveals self-similar
dynamical structures consisting of clusters of bubbles rolling as rigid bodies.
To relate the instantaneous (elastic) and time-averaged (plastic) components of
the strain, we develop a stochastic model where irreversible rearrangements are
activated by local stress fluctuations originating from the rubbing of the
wall. This model gives a complete description of our observations and is also
consistent with data obtained on granular shear bands by other groups.Comment: 5 pages, 2 figure
Three-dimensional jamming and flows of soft glassy materials
Various disordered dense systems such as foams, gels, emulsions and colloidal
suspensions, exhibit a jamming transition from a liquid state (they flow) to a
solid state below a yield stress. Their structure, thoroughly studied with
powerful means of 3D characterization, exhibits some analogy with that of
glasses which led to call them soft glassy materials. However, despite its
importance for geophysical and industrial applications, their rheological
behavior, and its microscopic origin, is still poorly known, in particular
because of its nonlinear nature. Here we show from two original experiments
that a simple 3D continuum description of the behaviour of soft glassy
materials can be built. We first show that when a flow is imposed in some
direction there is no yield resistance to a secondary flow: these systems are
always unjammed simultaneously in all directions of space. The 3D jamming
criterion appears to be the plasticity criterion encountered in most solids. We
also find that they behave as simple liquids in the direction orthogonal to
that of the main flow; their viscosity is inversely proportional to the main
flow shear rate, as a signature of shear-induced structural relaxation, in
close similarity with the structural relaxations driven by temperature and
density in other glassy systems.Comment: http://www.nature.com/nmat/journal/v9/n2/abs/nmat2615.htm
Resonant x-ray scattering study of magnetic-dipole and electric-quadrupole order in U0.75Np0.25O2
Abstract not availableJRC.E-Institute for Transuranium Elements (Karlsruhe