180 research outputs found

    Deficiency in Galectin-3 Promotes Hepatic Injury in CDAA Diet-Induced Nonalcoholic Fatty Liver Disease

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) is increasingly recognized as a condition in which excess fat accumulates in hepatocytes. Nonalcoholic steatohepatitis (NASH), a severe form of NAFLD in which inflammation and fibrosis in the liver are noted, may eventually progress to end-stage liver disease. Galectin-3, a β-galactoside-binding animal lectin, is a multifunctional protein. This protein is involved in inflammatory responses and carcinogenesis. We investigated whether galectin-3 is involved in the development of NASH by comparing galectin-3 knockout (gal3−/−) mice and wild-type (gal3+/+) mice with choline-deficient L-amino-acid-defined (CDAA) diet-induced NAFLD/NASH. Hepatic injury was significantly more severe in the gal3−/− male mice, as compared to the gal3+/+ mice. Data generated by microarray analysis of gene expression suggested that galectin-3 deficiency causes alterations in the expression of various genes associated with carcinogenesis and lipid metabolism. Through canonical pathway analysis, involvement of PDGF and IL-6 signaling pathways was suggested in galectin-3 deficiency. Significant increase of CD14, Fos, and Jun, those that were related to lipopolysaccharide-mediated signaling, was candidate to promote hepatocellular damages in galectin-3 deficiency. In conclusion, galectin-3 deficiency in CDAA diet promotes NAFLD features. It may be caused by alterations in the expression profiles of various hepatic genes including lipopolysaccharide-mediated inflammation

    Polysaccharide-Containing Macromolecules in a Kampo (Traditional Japanese Herbal) Medicine, Hochuekkito: Dual Active Ingredients for Modulation of Immune Functions on Intestinal Peyer's Patches and Epithelial cells

    Get PDF
    A traditional Japanese herbal (Kampo) medicine, Hochuekkito (Bu-Zhong-Yi-Qi-Tang in Chinese, TJ-41) is a well-known Kampo formula, and has been found to enhance antigen-specific antibody response in not only local mucosal immune system in upper respiratory tract, but also systemic immune system through upper respiratory mucosal immune system. Although this immunopharmacological effect has been proposed to express by modulation of intestinal immune system including Peyer's patches and intestinal epithelial cells, active ingredients are not known. TJ-41 directly affected the production of bone marrow cell-proliferative growth factors from murine Peyer's patch immunocompetent cells in vitro. Among low molecular, intermediate size and macromolecular weight fractions prepared from TJ-41, only fraction containing macromolecular weight ingredients showed Peyer's patch-mediated bone marrow cell-proliferation enhancing activity. Anion-exchange chromatography and gel filtration gave 17 subfractions comprising polysaccharides and lignins from the macromolecular weight fraction of TJ-41, and some of the subfractions showed significant enhancing activities having different degrees. Some of the subfractions also expressed stimulating activity on G-CSF-production from colonic epithelial cells, and statistically significant positive correlation was observed among enhancing activities of the subfractions against Peyer's patch immunocompetent cells and epithelial cells. Among the fractions from TJ-41 oral administration of macromolecular weight ingredient fraction to mice succeeded to enhance antigen-specific antibody response in systemic immune system through upper respiratory mucosal immune system, but all the separated fractions failed to enhance the in vivo antibody response in upper respiratory tract

    Correlation between optic nerve head circulation and visual function before and after anti-VEGF therapy for central retinal vein occlusion : prospective, interventional case series

    Get PDF
    Background: To determine the correlation between the optic nerve head (ONH) circulation determined by laser speckle flowgraphy and the best-corrected visual acuity or retinal sensitivity before and after intravitreal bevacizumab or ranibizumab for central retinal vein occlusion. Methods: Thirty-one eyes of 31 patients were treated with intravitreal bevacizumab or ranibizumab for macular edema due to a central retinal vein occlusion. The blood flow in the large vessels on the ONH, the best-corrected visual acuity, and retinal sensitivity were measured at the baseline, and at 1, 3, and 6 months after treatment. The arteriovenous passage time on fluorescein angiography was determined. The venous tortuosity index was calculated on color fundus photograph by dividing the length of the tortuous retinal vein by the chord length of the same segment. The blood flow was represented by the mean blur rate (MBR) determined by laser speckle flowgraphy. To exclude the influence of systemic circulation and blood flow in the ONH tissue, the corrected MBR was calculated as MBR of ONH vessel area – MBR of ONH tissue area in the affected eye divided by the vascular MBR – tissue MBR in the unaffected eye. Pearson’s correlation tests were used to determine the significance of correlations between the MBR and the best-corrected visual acuity, retinal sensitivity, arteriovenous passage time, or venous tortuosity index. Results: At the baseline, the corrected MBR was significantly correlated with the arteriovenous passage time and venous tortuosity index (r = -0.807, P < 0.001; r = -0.716, P < 0.001; respectively). The corrected MBR was significantly correlated with the best-corrected visual acuity and retinal sensitivity at the baseline, and at 1, 3, and 6 months (all P < 0.050). The corrected MBR at the baseline was significantly correlated with the best-corrected visual acuity at 6 months (r = -0.651, P < 0.001) and retinal sensitivity at 6 months (r = 0.485, P = 0.005). Conclusions: The pre-treatment blood flow velocity of ONH can be used as a predictive factor for the best-corrected visual acuity and retinal sensitivity after anti-VEGF therapy for central retinal vein occlusion. Trial registration: Trial Registration number: UMIN000009072. Date of registration: 10/15/2012

    Comparison of anterior chamber depth measurements by 3-dimensional optical coherence tomography, partial coherence interferometry biometry, Scheimpflug rotating camera imaging, and ultrasound biomicroscopy

    Get PDF
    PURPOSE: To evaluate the congruity of anterior chamber depth (ACD) measurements using 4 devices. SETTING: Saneikai Tsukazaki Hospital, Himeji City, Japan. DESIGN: Comparative case series. METHODS: In 1 eye of 42 healthy participants, the ACD was measured by 3-dimensional corneal and anterior segment optical coherence tomography (CAS-OCT), partial coherence interferometry (PCI), Scheimpflug imaging, and ultrasound biomicroscopy (UBM). The differences between the measurements were evaluated by 2-way analysis of variance and post hoc analysis. Agreement between the measurements was evaluated using Bland-Altman analysis. To evaluate the true ACD using PCI, the automatically calculated ACD minus the central corneal thickness measured by CAS-OCT was defined as PCI true. Two ACD measurements were also taken with CAS-OCT. RESULTS: The mean ACD was 3.72 mm G 0.23 (SD) (PCI), 3.18 G 0.23 mm (PCI true), 3.24 G 0.25 mm (Scheimpflug), 3.03G 0.25 mm (UBM), 3.14 G 0.24 mm (CAS-OCT auto), and 3.12 G 0.24 mm (CAS-OCT manual). A significant difference was observed between PCI biometry, Scheimpflug imaging, and UBM measurements and the other methods. Post hoc analysis showed no significant differences between PCI true and CAS-OCT auto or between the CAS-OCT auto and CAS-OCT manual. Strong correlations were observed between all measurements; however, Bland-Altman analysis showed good agreement only between PCI true and Scheimpflug imaging and between CAS-OCT auto and CAS OCT manual. CONCLUSION: The ACD measurements obtained from PCI biometry, Scheimpflug imaging, CAS-OCT, and UBM were significantly different and not interchangeable except for PCI true and CAS-OCT auto and CAS-OCT auto and CAS-OCT manual. Financial Disclosure: No author has a financial or proprietary interest in any material or method mentioned

    Non-uniform distribution of the contraction/extension (C–E) in the left ventricular myocardium related to the myocardial function

    Get PDF
    AbstractObjectiveWe attempted to disclose the microscopic characteristics of the non-uniform distribution of the contraction and extension (C–E) of the left ventricular (LV) myocardium using a new methodology (echo-dynamography).MethodsThe distributions of the “axial strain rate” (aSR) and the intra-mural velocity in the local areas of the free wall including the posterior wall (PW) and interventricular septum (IVS) were microscopically obtained using echo-dynamography with a high accuracy of 821μm in the spatial resolution. The results were shown by the color M-mode echocardiogram or curvilinear graph. Subjects were 10 presumably normal volunteers.Results(1)Both the C–E in the pulsating LV wall showed non-uniformity spatially and time-sequentially.(2)The C–E property was better evaluated by the aSR distribution method rather than the intra-mural velocity distribution method.(3)Two types of non-uniformity of the aSR distribution were observed: i.e. (i) the difference of its (+)SR (contraction: C) or (−)SR (extension: E) was solely the “magnitude”; (ii) the coexistence of both the (+) SR and (−)SR at the same time.(4)The aSR distribution during systole was either “spotted,” or “multi-layered,” or “toned” distribution, whereas “stratified,” “toned,” or “alternating” distributions were observed during diastole.(5)The aSR distribution in the longitudinal section plane was varied in the individual areas of the wall even during the same timing.(6)To the mechanical function of the LV, there was a different behavior between the IVS and PW.ConclusionsThe aSR and its distribution were the major determinants of the C–E property of the LV myocardium. Spatial as well as time-sequential uniformity of either contraction or extension did not exist. The myocardial function changed depending on the assemblage of the aSR distribution, and by the synergistic effect of (+)SR and (−)SR, the non-uniformity itself potentially served to hold the smooth LV mechanical function

    K+-Cl- Cotransporter-3a Up-regulates Na+,K+-ATPase in Lipid Rafts of Gastric Luminal Parietal Cells*

    Get PDF
    Gastric parietal cells migrate from the luminal to the basal region of the gland and they gradually lose acid secretory activity. So far, distribution and function of K+-Clcotransporters (KCCs) in gastric parietal cells have not been reported. We found that KCC3a but not KCC3b mRNA was highly expressed and KCC3a protein was predominantly expressed in the basolateral membrane of rat gastric parietal cells located in the luminal region of the glands. KCC3a and Na+,K+-ATPase α1-subunit (α1NaK) were co-immunoprecipitated and both of them were highly localized in a lipid raft fraction. The ouabain-sensitive K+-dependent ATP-hydrolyzing activity (Na+,K+-ATPase activity) was significantly inhibited by a KCC inhibitor (DIOA). The stable exogenous expression of KCC3a in LLC-PK1 cells resulted in association of KCC3a with endogenous α1NaK and it recruited α1NaK in lipid rafts, accompanying increases of Na+,K+-ATPase activity and ouabain-sensitive Na+ transport activity which were suppressed by DIOA, while the total expression level of α1NaK in the cells was not significantly altered. On the other hand, the expression of KCC4 induced no association with α1NaK. In conclusion, KCC3a forms a functional complex with α1NaK in the basolateral membrane of luminal parietal cells and it up-regulates α1NaK in lipid rafts, while KCC3a is absent in basal parietal cells

    SPINK1 as a plasma marker for tumor hypoxia and a therapeutic target for radiosensitization

    Get PDF
    Hypoxia is associated with tumor radioresistance; therefore, a predictive marker for tumor hypoxia and a rational target to overcome it have been sought to realize personalized radiotherapy. Here, we show that serine protease inhibitor Kazal type I (SPINK1) meets these 2 criteria. SPINK1 expression was induced upon hypoxia (O2 < 0.1%) at the transcription initiation level in a HIF-dependent manner, causing an increase in secreted SPINK1 levels. SPINK1 proteins were detected both within and around hypoxic regions of xenografted and clinical tumor tissues, and their plasma levels increased in response to decreased oxygen supply to xenografts. Secreted SPINK1 proteins enhanced radioresistance of cancer cells even under normoxic conditions in EGFR-dependent and nuclear factor erythroid 2–related factor 2–dependent (Nrf2-dependent) manners and accelerated tumor growth after radiotherapy. An anti-SPINK1 neutralizing antibody exhibited a radiosensitizing effect. These results suggest that SPINK1 secreted from hypoxic cells protects the surrounding and relatively oxygenated cancer cells from radiation in a paracrine manner, justifying the use of SPINK1 as a target for radiosensitization and a plasma marker for predicting tumor hypoxia

    Novel transcript profiling of diffuse alveolar damage induced by hyperoxia exposure in mice: Normalization by glyceraldehyde 3-phosphate dehydrogenase

    Get PDF
    Under mechanical ventilation with high-inspired oxygen concentration, diffuse alveolar damage (DAD) was found to take place in some patients. To clarify the molecular pathophysiology of this condition we investigated the time course of gene expression changes induced by hyperoxia exposure in mouse lung using real-time quantitative polymerase chain reaction (real-time qPCR). Our results normalized by glyceraldehyde 3-phosphate dehydrogenase showed that mRNA levels of cysteine rich protein 61 (CYR61) and connective tissue growth factor (CTGF) were significantly up-regulated, while those of surfactant-associated protein C (SFTPC), cytochrome P450, 2F2 (CYP2F2), Claudin 1, (CLDN1), membrane-associated zonula occludens protein-1 (ZO-1), lysozyme (LYZS), and P lysozyme structural (LZP-S) were significantly down-regulated. Increasing level of mRNAs, each encoding CYR61 and CTGF, suggests a serious risk of fibrosing alveolitis. Decrease in levels of mRNAs for SFTPC, CYP2F2, CLDN1, ZO-1, LYZS, and LZP-S suggests alveolar dysfunction and disruption of the immune system. Moreover we confirmed apoptotic conditions, such as significant up-regulations of mRNA levels in Myc and Galectin-3. Hyperoxic condition probably yielded reactive oxygen species (ROS), which resulted in a malignant cycle of ROS production by Myc overexpression

    Iris Morphological Features in Patients with 360° Angle-Closure Neovascular Glaucoma: An Anterior Segment Optical Coherence Tomography Study

    Get PDF
    Purpose: To investigate iris morphological features in 360° angle-closure neovascular glaucoma (NVG) by swept-source anterior segment optical coherence tomography (ASOCT). Patients and Methods: In this retrospective, clinic-based, comparative study, 14 patients with 360° angle-closure NVG and 14 healthy age-matched control subjects were enrolled. All patients enrolled had no prior glaucoma surgery but underwent cataract surgery with intraocular lens implantation. Horizontal scanning images of swept-source ASOCT were analyzed using software calipers in temporal and nasal angle areas. The iris thickness at 1 and 2 mm from the pupil edge, iris length, trabecular meshwork length, peripheral anterior synechia (PAS) length, PAS height ratio (PAS length/trabecular meshwork length), and pupil diameter were measured. Results: Between the groups, there were no statistically significant differences in iris length, trabecular meshwork length, and pupil diameter (p &#x3e; 0.05). However, the iris thickness was significantly reduced in the NVG group compared with the control group in the temporal and nasal areas (0.306 vs. 0.563 mm/0.326 vs. 0.645 mm at 1 mm, 0.278 vs. 0.523 mm/0.282 vs. 0.546 mm at 2 mm, respectively) (mean, all p &#x3c; 0.001). In the NVG group, PAS height ratios were 1.55 ± 0.45 (mean ± standard deviation) (range, 0.58–2.30) and 1.55 ± 0.78 (range, 0.68–3.68) at the temporal and nasal angles, respectively. Conclusions: In patients with 360° angle-closure NVG, the iris thickness decreased to about 50% of that in healthy subjects, and the PAS length exceeded the trabecular meshwork length by about 1.5 times
    corecore