356 research outputs found

    Predictors of Hospitalization for Injection Drug Users Seeking Care for Soft Tissue Infections

    Get PDF
    BACKGROUND: Soft tissue infections (STIs) from injection drug use are a common cause of Emergency Department visits, hospitalizations, and operating room procedures, yet little is known about factors that may predict the need for these costly medical services. OBJECTIVE: To describe a cohort of injection drug users seeking Emergency Department care for STIs and to identify risk factors associated with hospitalization. We hypothesized that participants who delayed seeking care would be hospitalized more often than those who did not. DESIGN: Cohort study using in-person structured interviews and medical record review. Logistic regression assessed the association between hospital admission and delay in seeking care as well as other demographic, clinical, and psychosocial factors. PARTICIPANTS: Injection drug users who sought Emergency Department care for STIs from May 2001 to March 2002. RESULTS: Of the 136 participants, 55 (40%) were admitted to the hospital. Delay in seeking care was not associated with hospital admission. Participants admitted for their infection were significantly more likely to be living in a shelter (P = .01) and to report being hospitalized 2 or more times in the past year (P < .01). CONCLUSIONS: We identified a subpopulation of injection drug users, mostly living in shelters, who were hospitalized frequently in the past year and who were more likely to be hospitalized for their current infections compared to others. As members of this subpopulation can be easily identified and located, they may benefit from interventions to reduce the health care utilization resulting from these infections

    Skp is a multivalent chaperone of outer membrane proteins

    Get PDF
    The trimeric chaperone Skp sequesters outer-membrane proteins (OMPs) within a hydrophobic cage, thereby preventing their aggregation during transport across the periplasm in Gram-negative bacteria. Here, we studied the interaction between Escherichia coli Skp and five OMPs of varying size. Investigations of the kinetics of OMP folding revealed that higher Skp/OMP ratios are required to prevent the folding of 16-stranded OMPs compared with their 8-stranded counterparts. Ion mobility spectrometry–mass spectrometry (IMS–MS) data, computer modeling and molecular dynamics simulations provided evidence that 10- to 16-stranded OMPs are encapsulated within an expanded Skp substrate cage. For OMPs that cannot be fully accommodated in the expanded cavity, sequestration is achieved by binding of an additional Skp trimer. The results suggest a new mechanism for Skp chaperone activity involving the coordination of multiple copies of Skp in protecting a single substrate from aggregation

    IL-10 Blocks the Development of Resistance to Re-Infection with Schistosoma mansoni

    Get PDF
    Despite effective chemotherapy to treat schistosome infections, re-infection rates are extremely high. Resistance to reinfection can develop, however it typically takes several years following numerous rounds of treatment and re-infection, and often develops in only a small cohort of individuals. Using a well-established and highly permissive mouse model, we investigated whether immunoregulatory mechanisms influence the development of resistance. Following Praziquantel (PZQ) treatment of S. mansoni infected mice we observed a significant and mixed anti-worm response, characterized by Th1, Th2 and Th17 responses. Despite the elevated anti-worm response in PBMC's, liver, spleen and mesenteric lymph nodes, this did not confer any protection from a secondary challenge infection. Because a significant increase in IL-10-producing CD4+CD44+CD25+GITR+ lymphocytes was observed, we hypothesised that IL-10 was obstructing the development of resistance. Blockade of IL-10 combined with PZQ treatment afforded a greater than 50% reduction in parasite establishment during reinfection, compared to PZQ treatment alone, indicating that IL-10 obstructs the development of acquired resistance. Markedly enhanced Th1, Th2 and Th17 responses, worm-specific IgG1, IgG2b and IgE and circulating eosinophils characterized the protection. This study demonstrates that blocking IL-10 signalling during PZQ treatment can facilitate the development of protective immunity and provide a highly effective strategy to protect against reinfection with S. mansoni

    Effects of chronic ascariasis and trichuriasis on cytokine production and gene expression in human blood: a cross-sectional study.

    Get PDF
    Background Chronic soil-transmitted helminth (STH) infections are associated with effects on systemic immune responses that could be caused by alterations in immune homeostasis. To investigate this, we measured the impact in children of STH infections on cytokine responses and gene expression in unstimulated blood. Methodology/Principal Findings Sixty children were classified as having chronic, light, or no STH infections. Peripheral blood mononuclear cells were cultured in medium for 5 days to measure cytokine accumulation. RNA was isolated from peripheral blood and gene expression analysed using microarrays. Different infection groups were compared for the purpose of analysis: STH infection (combined chronic and light vs. uninfected groups) and chronic STH infection (chronic vs. combined light and uninfected groups). The chronic STH infection effect was associated with elevated production of GM-CSF (P = 0.007), IL-2 (P = 0.03), IL-5 (P = 0.01), and IL-10 (P = 0.01). Data reduction suggested that chronic infections were primarily associated with an immune phenotype characterized by elevated IL-5 and IL-10, typical of a modified Th2-like response. Chronic STH infections were associated with the up-regulation of genes associated with immune homeostasis (IDO, P = 0.03; CCL23, P = 0.008, HRK, P = 0.005), down-regulation of microRNA hsa-let-7d (P = 0.01) and differential regulation of several genes associated with granulocyte-mediated inflammation (IL-8, down-regulated, P = 0.0002; RNASE2, up-regulated, P = 0.009; RNASE3, up-regulated, p = 0.03). Conclusions/Significance Chronic STH infections were associated with a cytokine response indicative of a modified Th2 response. There was evidence that STH infections were associated with a pattern of gene expression suggestive of the induction of homeostatic mechanisms, the differential expression of several inflammatory genes and the down-regulation of microRNA has-let-7d. Effects on immune homeostasis and the development of a modified Th2 immune response during chronic STH infections could explain the systemic immunologic effects that have been associated with these infections such as impaired immune responses to vaccines and the suppression of inflammatory diseases

    Outer membrane protein folding from an energy landscape perspective

    Get PDF
    The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OFMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding

    SINE RNA Induces Severe Developmental Defects in Arabidopsis thaliana and Interacts with HYL1 (DRB1), a Key Member of the DCL1 Complex

    Get PDF
    The proper temporal and spatial expression of genes during plant development is governed, in part, by the regulatory activities of various types of small RNAs produced by the different RNAi pathways. Here we report that transgenic Arabidopsis plants constitutively expressing the rapeseed SB1 SINE retroposon exhibit developmental defects resembling those observed in some RNAi mutants. We show that SB1 RNA interacts with HYL1 (DRB1), a double-stranded RNA-binding protein (dsRBP) that associates with the Dicer homologue DCL1 to produce microRNAs. RNase V1 protection assays mapped the binding site of HYL1 to a SB1 region that mimics the hairpin structure of microRNA precursors. We also show that HYL1, upon binding to RNA substrates, induces conformational changes that force single-stranded RNA regions to adopt a structured helix-like conformation. Xenopus laevis ADAR1, but not Arabidopsis DRB4, binds SB1 RNA in the same region as HYL1, suggesting that SINE RNAs bind only a subset of dsRBPs. Consistently, DCL4-DRB4-dependent miRNA accumulation was unchanged in SB1 transgenic Arabidopsis, whereas DCL1-HYL1-dependent miRNA and DCL1-HYL1-DCL4-DRB4-dependent tasiRNA accumulation was decreased. We propose that SINE RNA can modulate the activity of the RNAi pathways in plants and possibly in other eukaryotes

    Cytokine responses to Schistosoma haematobium in a Zimbabwean population: contrasting profiles for IFN-γ, IL-4, IL-5 and IL-10 with age

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rate of development of parasite-specific immune responses can be studied by following their age profiles in exposed and infected hosts. This study determined the cytokine-age profiles of Zimbabweans resident in a <it>Schistosoma haematobium </it>endemic area and further investigated the relationship between the cytokine responses and infection intensity.</p> <p>Methods</p> <p>Schistosome adult worm antigen-specific IFN-γ, IL-4, IL-5 and IL-10 cytokine responses elicited from whole blood cultures were studied in 190 Zimbabweans exposed to <it>S. haematobium </it>infection (aged 6 to 40 years old). The cytokines were measured using capture ELISAs and the data thus obtained together with <it>S. haematobium </it>egg count data from urine assays were analysed using a combination of parametric and nonparametric statistical approaches.</p> <p>Results</p> <p>Age profiles of schistosome infection in the study population showed that infection rose to peak in childhood (11–12 years) followed by a sharp decline in infection intensity while prevalence fell more gradually. Mean infection intensity was 37 eggs/10 ml urine (SE 6.19 eggs/10 ml urine) while infection prevalence was 54.7%. Measurements of parasite-specific cytokine responses showed that IL-4, IL-5 and IL-10 but not IFN-γ followed distinct age-profiles. Parasite-specific IL-10 production developed early, peaking in the youngest age group and declining thereafter; while IL-4 and IL-5 responses were slower to develop with a later peak. High IL-10 producers were likely to be egg positive with IL-10 production increasing with increasing infection intensity. Furthermore people producing high levels of IL-10 produced little or no IL-5, suggesting that IL-10 may be involved in the regulation of IL-5 levels. IL-4 and IFN-γ did not show a significant relationship with infection status or intensity and were positively associated with each other.</p> <p>Conclusion</p> <p>Taken together, these results show that the IL-10 responses develop early compared to the IL-5 response and may be down-modulating immunopathological responses that occur during the early phase of infection. The results further support current suggestions that the Th1/Th2 dichotomy does not sufficiently explain susceptibility or resistance to schistosome infection.</p

    BarA-UvrY Two-Component System Regulates Virulence of Uropathogenic E. coli CFT073

    Get PDF
    Uropathogenic Escherichia coli (UPEC), a member of extraintestinal pathogenic E. coli, cause ∼80% of community-acquired urinary tract infections (UTI) in humans. UPEC initiates its colonization in epithelial cells lining the urinary tract with a complicated life cycle, replicating and persisting in intracellular and extracellular niches. Consequently, UPEC causes cystitis and more severe form of pyelonephritis. To further understand the virulence characteristics of UPEC, we investigated the roles of BarA-UvrY two-component system (TCS) in regulating UPEC virulence. Our results showed that mutation of BarA-UvrY TCS significantly decreased the virulence of UPEC CFT073, as assessed by mouse urinary tract infection, chicken embryo killing assay, and cytotoxicity assay on human kidney and uroepithelial cell lines. Furthermore, mutation of either barA or uvrY gene reduced the production of hemolysin, lipopolysaccharide (LPS), proinflammatory cytokines (TNF-α and IL-6) and chemokine (IL-8). The virulence phenotype was restored similar to that of wild-type by complementation of either barA or uvrY gene in trans. In addition, we discussed a possible link between the BarA-UvrY TCS and CsrA in positively and negatively controlling virulence in UPEC. Overall, this study provides the evidences for BarA-UvrY TCS regulates the virulence of UPEC CFT073 and may point to mechanisms by which virulence regulations are observed in different ways may control the long-term survival of UPEC in the urinary tract
    corecore