335 research outputs found

    Developmental Neurotoxicity of Pyrethroid Insecticides: Critical Review and Future Research Needs

    Get PDF
    Pyrethroid insecticides have been used for more than 40 years and account for 25% of the worldwide insecticide market. Although their acute neurotoxicity to adults has been well characterized, information regarding the potential developmental neurotoxicity of this class of compounds is limited. There is a large age dependence to the acute toxicity of pyrethroids in which neonatal rats are at least an order of magnitude more sensitive than adults to two pyrethroids. There is no information on age-dependent toxicity for most pyrethroids. In the present review we examine the scientific data related to potential for age-dependent and developmental neurotoxicity of pyrethroids. As a basis for understanding this neurotoxicity, we discuss the heterogeneity and ontogeny of voltage-sensitive sodium channels, a primary neuronal target of pyrethroids. We also summarize 22 studies of the developmental neurotoxicity of pyrethroids and review the strengths and limitations of these studies. These studies examined numerous end points, with changes in motor activity and muscarinic acetylcholine receptor density the most common. Many of the developmental neurotoxicity studies suffer from inadequate study design, problematic statistical analyses, use of formulated products, and/or inadequate controls. These factors confound interpretation of results. To better understand the potential for developmental exposure to pyrethroids to cause neurotoxicity, additional, well-designed and well-executed developmental neurotoxicity studies are needed. These studies should employ state-of-the-science methods to promote a greater understanding of the mode of action of pyrethroids in the developing nervous system

    High sensitivity assays for docetaxel and paclitaxel in plasma using solid-phase extraction and high-performance liquid chromatography with UV detection

    Get PDF
    BACKGROUND: The taxanes paclitaxel and docetaxel have traditionally been used in high doses every third week in the treatment of cancer. Lately there has been a trend towards giving weekly low doses to improve the therapeutic index. This article describes the development of high performance liquid chromatographic (HPLC) methods suitable for monitoring taxane levels in patients, focusing on patients receiving low-dose therapy. METHODS: Paclitaxel and docetaxel were extracted from human plasma by solid phase extraction, and detected by absorbance at 227 nm after separation by reversed phase high performance liquid chromatography. The methods were validated and their performance were tested using samples from patients receiving paclitaxel or docetaxel. RESULTS: The limits of quantitation were 1 nM for docetaxel and 1.2 nM for paclitaxel. For both compounds linearity was confirmed from the limit of quantitation up to 1000 nM in plasma. The recoveries ranged between 92% and 118% for docetaxel and between 76% and 104% for paclitaxel. Accuracy and precision were within international acceptance criteria, that is within ± 15%, except at the limit of quantitation where values within ± 20% are acceptable. Low-dose patients included in an on going clinical trial had a median docetaxel concentration of 2.8 nM at 72 hours post infusion. Patients receiving 100 mg/m(2 )of paclitaxel had a mean paclitaxel concentration of 21 nM 48 hours after the end of infusion. CONCLUSION: We have developed an HPLC method using UV detection capable of quantifying 1 nM of docetaxel in plasma samples. The method should be useful for pharmacokinetic determinations at all relevant doses of docetaxel. Using a similar methodology paclitaxel can be quantified down to a concentration of 1.2 nM in plasma with acceptable accuracy and precision. We further demonstrate that the previously reported negative influence of Cremophor EL on assay performance may be overcome by degradation of the detergent by incubation with lipase

    Forest landscape ecology and global change: an introduction

    Get PDF
    Forest landscape ecology examines broad-scale patterns and processes and their interactions in forested systems and informs the management of these ecosystems. Beyond being among the richest and the most complex terrestrial systems, forest landscapes serve society by providing an array of products and services and, if managed properly, can do so sustainably. In this chapter, we provide an overview of the field of forest landscape ecology, including major historical and present topics of research, approaches, scales, and applications, particularly those concerning edges, fragmentation, connectivity, disturbance, and biodiversity. In addition, we discuss causes of change in forest landscapes, particularly land-use and management changes, and the expected structural and functional consequences that may result from these drivers. This chapter is intended to set the context and provide an overview for the remainder of the book and poses a broad set of questions related to forest landscape ecology and global change that need answers

    Measures of the Consumer Food Store Environment: A Systematic Review of the Evidence 2000–2011

    Get PDF
    Description of the consumer food environment has proliferated in publication. However, there has been a lack of systematic reviews focusing on how the consumer food environment is associated with the following: (1) neighborhood characteristics; (2) food prices; (3) dietary patterns; and (4) weight status. We conducted a systematic review of primary, quantitative, observational studies, published in English that conducted an audit of the consumer food environment. The literature search included electronic, hand searches, and peer-reviewed from 2000 to 2011. Fifty six papers met the inclusion criteria. Six studies reported stores in low income neighborhoods or high minority neighborhoods had less availability of healthy food. While, four studies found there was no difference in availability between neighborhoods. The results were also inconsistent for differences in food prices, dietary patterns, and weight status. This systematic review uncovered several key findings. (1) Systematic measurement of determining availability of food within stores and store types is needed; (2) Context is relevant for understanding the complexities of the consumer food environment; (3) Interventions and longitudinal studies addressing purchasing habits, diet, and obesity outcomes are needed; and (4) Influences of price and marketing that may be linked with why people purchase certain items

    Topiramate-Induced Modulation of Hepatic Molecular Mechanisms: An Aspect for Its Anti-Insulin Resistant Effect

    Get PDF
    Topiramate is an antiepileptic drug known to ameliorate insulin resistance besides reducing body weight. Albeit liver plays a fundamental role in regulation of overall insulin resistance, yet the effect of topiramate on this organ is controversial and is not fully investigated. The current work aimed to study the potential hepatic molecular mechanistic cassette of the anti-insulin resistance effect of topiramate. To this end, male Wistar rats were fed high fat/high fructose diet (HFFD) for 10 weeks to induce obese, insulin resistant, hyperglycemic animals, but with no overt diabetes. Two HFFD-groups received oral topiramate, 40 or 100 mg/kg, for two weeks. Topiramate, on the hepatic molecular level, has opposed the high fat/high fructose diet effect, where it significantly increased adiponectin receptors, GLUT2, and tyrosine kinase activity, while decreased insulin receptor isoforms. Besides, it improved the altered glucose homeostasis and lipid profile, lowered the ALT level, caused subtle, yet significant decrease in TNF-α, and boosted adiponectin in a dose dependent manner. Moreover, topiramate decreased liver weight/, visceral fat weight/, and epididymal fat weight/body weight ratios. The study proved that insulin-resistance has an effect on hepatic molecular level and that the topiramate-mediated insulin sensitivity is ensued partly by modulation of hepatic insulin receptor isoforms, activation of tyrosine kinase, induction of GLUT2 and elevation of adiponectin receptors, as well as their ligand, adiponectin, besides its known improving effect on glucose tolerance and lipid homeostasis

    The art of cellular communication: tunneling nanotubes bridge the divide

    Get PDF
    The ability of cells to receive, process, and respond to information is essential for a variety of biological processes. This is true for the simplest single cell entity as it is for the highly specialized cells of multicellular organisms. In the latter, most cells do not exist as independent units, but are organized into specialized tissues. Within these functional assemblies, cells communicate with each other in different ways to coordinate physiological processes. Recently, a new type of cell-to-cell communication was discovered, based on de novo formation of membranous nanotubes between cells. These F-actin-rich structures, referred to as tunneling nanotubes (TNT), were shown to mediate membrane continuity between connected cells and facilitate the intercellular transport of various cellular components. The subsequent identification of TNT-like structures in numerous cell types revealed some structural diversity. At the same time it emerged that the direct transfer of cargo between cells is a common functional property, suggesting a general role of TNT-like structures in selective, long-range cell-to-cell communication. Due to the growing number of documented thin and long cell protrusions in tissue implicated in cell-to-cell signaling, it is intriguing to speculate that TNT-like structures also exist in vivo and participate in important physiological processes

    Role of novel targeted therapies in the clinic

    Get PDF
    The number and variety of novel, molecular-targeted agents offers realistic hope for significant advances in cancer treatment. The potential of these new treatment approaches is unquestionable, but the reality is something that only thorough clinical evaluation and experience can reveal. Clinical experience of targeted therapies is at an early stage but it is likely that we will have an increasing number of treatment options available to us in the near future. This manuscript explores our current understanding of molecular-targeted therapies and considers: What approach should be used? (single vs multitarget agents); When should they be administered? (identifying the optimal point for intervention); How should they be used? (monotherapy or combination therapy regimens); and Who should we be giving them to? (acknowledging the need for patient selection)

    Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns.

    Get PDF
    The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs-locomotor bouts-matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior
    corecore