210 research outputs found

    Radio relics in cosmological simulations

    Full text link
    Radio relics have been discovered in many galaxy clusters. They are believed to trace shock fronts induced by cluster mergers. Cosmological simulations allow us to study merger shocks in detail since the intra-cluster medium is heated by shock dissipation. Using high resolution cosmological simulations, identifying shock fronts and applying a parametric model for the radio emission allows us to simulate the formation of radio relics. We analyze a simulated shock front in detail. We find a rather broad Mach number distribution. The Mach number affects strongly the number density of relativistic electrons in the downstream area, hence, the radio luminosity varies significantly across the shock surface. The abundance of radio relics can be modeled with the help of the radio power probability distribution which aims at predicting radio relic number counts. Since the actual electron acceleration efficiency is not known, predictions for the number counts need to be normalized by the observed number of radio relics. For the characteristics of upcoming low frequency surveys we find that about thousand relics are awaiting discovery.Comment: 10 pages, 4 figures, Invited talk at the conference "Diffuse Relativistic Plasmas", Bangalore, 1-4 March 2011; in press in special issue of Journal of Astrophysics and Astronom

    Clusters of galaxies : observational properties of the diffuse radio emission

    Get PDF
    Clusters of galaxies, as the largest virialized systems in the Universe, are ideal laboratories to study the formation and evolution of cosmic structures...(abridged)... Most of the detailed knowledge of galaxy clusters has been obtained in recent years from the study of ICM through X-ray Astronomy. At the same time, radio observations have proved that the ICM is mixed with non-thermal components, i.e. highly relativistic particles and large-scale magnetic fields, detected through their synchrotron emission. The knowledge of the properties of these non-thermal ICM components has increased significantly, owing to sensitive radio images and to the development of theoretical models. Diffuse synchrotron radio emission in the central and peripheral cluster regions has been found in many clusters. Moreover large-scale magnetic fields appear to be present in all galaxy clusters, as derived from Rotation Measure (RM) studies. Non-thermal components are linked to the cluster X-ray properties, and to the cluster evolutionary stage, and are crucial for a comprehensive physical description of the intracluster medium. They play an important role in the cluster formation and evolution. We review here the observational properties of diffuse non-thermal sources detected in galaxy clusters: halos, relics and mini-halos. We discuss their classification and properties. We report published results up to date and obtain and discuss statistical properties. We present the properties of large-scale magnetic fields in clusters and in even larger structures: filaments connecting galaxy clusters. We summarize the current models of the origin of these cluster components, and outline the improvements that are expected in this area from future developments thanks to the new generation of radio telescopes.Comment: Accepted for the publication in The Astronomy and Astrophysics Review. 58 pages, 26 figure

    Origin of Cosmic Magnetic Fields

    Get PDF
    We propose that the overlapping shock fronts from young supernova remnants produce a locally unsteady, but globally steady large scale spiral shock front in spiral galaxies, where star formation and therefore massive star explosions correlate geometrically with spiral structure. This global shock front with its steep gradients in temperature, pressure and associated electric fields will produce drifts, which in turn give rise to a strong sheet-like electric current, we propose. This sheet current then produces a large scale magnetic field, which is regular, and connected to the overall spiral structure. This rejuvenates the overall magnetic field continuously, and also allows to understand that there is a regular field at all in disk galaxies. This proposal connects the existence of magnetic fields to accretion in disks. We not yet address all the symmetries of the magnetic field here; the picture proposed here is not complete. X-ray observations may be able to test it already.Comment: 18 pages, no figures; to be published in Proc. Palermo Meeting Sept. 2002, Eds. N. G. Sanchez et al., The Early Universe and the Cosmic Microwave Background: Theory and Observation
    corecore