2 research outputs found

    X-ray scattering from warm dense iron

    Get PDF
    We have carried out X-ray scattering experiments on iron foil samples that have been compressed and heated using laser-driven shocks created with the VULCAN laser system at the Rutherford-Appleton Laboratory. This is the highest Z element studied in such experiments so far and the first time scattering from warm dense iron has been reported. Because of the importance of iron in telluric planets, the work is relevant to studies of warm dense matter in planetary interiors. We report scattering results as well as shock breakout results that, in conjunction with hydrodynamic simulations, suggest the target has been compressed to a molten state at several 100 GPa pressure. Initial comparison with modelling suggests more work is needed to understand the structure factor of warm dense iron

    Plasma emission spectroscopy of solids irradiated by intense XUV pulses from a free electron laser

    No full text
    The FLASH XUV-free electron laser has been used to irradiate solid samples at intensities of the order 1016 W cm-2 at a wavelength of 13.5 nm. The subsequent time integrated XUV emission was observed with a grating spectrometer. The electron temperature inferred from plasma line ratios was in the range 5-8 eV with electron density in the range 1021-1022 cm-3. These results are consistent with the saturation of absorption through bleaching of the L-edge by intense photo-absorption reported in an earlier publication. © 2009 Elsevier B.V. All rights reserved
    corecore