965 research outputs found

    A Linear-Nonlinear Formulation of Einstein Equations for the Two-Body Problem in General Relativity

    Get PDF
    A formulation of Einstein equations is presented that could yield advantages in the study of collisions of binary compact objects during regimes between linear-nonlinear transitions. The key idea behind this formulation is a separation of the dynamical variables into i) a fixed conformal 3-geometry, ii) a conformal factor possessing nonlinear dynamics and iii) transverse-traceless perturbations of the conformal 3-geometry.Comment: 7 pages, no figure

    Relativistic dust disks and the Wilson-Mathews approach

    Full text link
    Treating problems in full general relativity is highly complex and frequently approximate methods are employed to simplify the solution. We present comparative solutions of a infinitesimally thin relativistic, stationary, rigidly rotating disk obtained using the full equations and the approximate approach suggested by Wilson & Mathews. We find that the Wilson-Mathews method has about the same accuracy as the first post-Newtonian approximation.Comment: 4 Pages, 5 eps-figures, uses revtex.sty. Submitted to PR

    Irrotational binary neutron stars in quasiequilibrium

    Get PDF
    We report on numerical results from an independent formalism to describe the quasi-equilibrium structure of nonsynchronous binary neutron stars in general relativity. This is an important independent test of controversial numerical hydrodynamic simulations which suggested that nonsynchronous neutron stars in a close binary can experience compression prior to the last stable circular orbit. We show that, for compact enough stars the interior density increases slightly as irrotational binary neutron stars approach their last orbits. The magnitude of the effect, however, is much smaller than that reported in previous hydrodynamic simulations.Comment: 4 pages, 2 figures, revtex, accepted for publication in Phys. Rev.

    Relativistic Models for Binary Neutron Stars with Arbitrary Spins

    Full text link
    We introduce a new numerical scheme for solving the initial value problem for quasiequilibrium binary neutron stars allowing for arbitrary spins. The coupled Einstein field equations and equations of relativistic hydrodynamics are solved in the Wilson-Mathews conformal thin sandwich formalism. We construct sequences of circular-orbit binaries of varying separation, keeping the rest mass and circulation constant along each sequence. Solutions are presented for configurations obeying an n=1 polytropic equation of state and spinning parallel and antiparallel to the orbital angular momentum. We treat stars with moderate compaction ((m/R) = 0.14) and high compaction ((m/R) = 0.19). For all but the highest circulation sequences, the spins of the neutron stars increase as the binary separation decreases. Our zero-circulation cases approximate irrotational sequences, for which the spin angular frequencies of the stars increases by 13% (11%) of the orbital frequency for (m/R) = 0.14 ((m/R) = 0.19) by the time the innermost circular orbit is reached. In addition to leaving an imprint on the inspiral gravitational waveform, this spin effect is measurable in the electromagnetic signal if one of the stars is a pulsar visible from Earth.Comment: 21 pages, 14 figures. A few explanatory sentences added and some typos corrected. Accepted for publication in Phys. Rev.

    Towards a Realistic Neutron Star Binary Inspiral: Initial Data and Multiple Orbit Evolution in Full General Relativity

    Full text link
    This paper reports on our effort in modeling realistic astrophysical neutron star binaries in general relativity. We analyze under what conditions the conformally flat quasiequilibrium (CFQE) approach can generate ``astrophysically relevant'' initial data, by developing an analysis that determines the violation of the CFQE approximation in the evolution of the binary described by the full Einstein theory. We show that the CFQE assumptions significantly violate the Einstein field equations for corotating neutron stars at orbital separations nearly double that of the innermost stable circular orbit (ISCO) separation, thus calling into question the astrophysical relevance of the ISCO determined in the CFQE approach. With the need to start numerical simulations at large orbital separation in mind, we push for stable and long term integrations of the full Einstein equations for the binary neutron star system. We demonstrate the stability of our numerical treatment and analyze the stringent requirements on resolution and size of the computational domain for an accurate simulation of the system.Comment: 22 pages, 18 figures, accepted to Phys. Rev.

    Gauge conditions for binary black hole puncture data based on an approximate helical Killing vector

    Full text link
    We show that puncture data for quasicircular binary black hole orbits allow a special gauge choice that realizes some of the necessary conditions for the existence of an approximate helical Killing vector field. Introducing free parameters for the lapse at the punctures we can satisfy the condition that the Komar and ADM mass agree at spatial infinity. Several other conditions for an approximate Killing vector are then automatically satisfied, and the 3-metric evolves on a timescale smaller than the orbital timescale. The time derivative of the extrinsic curvature however remains significant. Nevertheless, quasicircular puncture data are not as far from possessing a helical Killing vector as one might have expected.Comment: 11 pages, 6 figures, 2 table

    Comparing Criteria for Circular Orbits in General Relativity

    Get PDF
    We study a simple analytic solution to Einstein's field equations describing a thin spherical shell consisting of collisionless particles in circular orbit. We then apply two independent criteria for the identification of circular orbits, which have recently been used in the numerical construction of binary black hole solutions, and find that both yield equivalent results. Our calculation illustrates these two criteria in a particularly transparent framework and provides further evidence that the deviations found in those numerical binary black hole solutions are not caused by the different criteria for circular orbits.Comment: 4 pages; to appear in PRD as a Brief Report; added and corrected reference

    Three-dimensional general relativistic hydrodynamics II: long-term dynamics of single relativistic stars

    Get PDF
    This is the second in a series of papers on the construction and validation of a three-dimensional code for the solution of the coupled system of the Einstein equations and of the general relativistic hydrodynamic equations, and on the application of this code to problems in general relativistic astrophysics. In particular, we report on the accuracy of our code in the long-term dynamical evolution of relativistic stars and on some new physics results obtained in the process of code testing. The tests involve single non-rotating stars in stable equilibrium, non-rotating stars undergoing radial and quadrupolar oscillations, non-rotating stars on the unstable branch of the equilibrium configurations migrating to the stable branch, non-rotating stars undergoing gravitational collapse to a black hole, and rapidly rotating stars in stable equilibrium and undergoing quasi-radial oscillations. The numerical evolutions have been carried out in full general relativity using different types of polytropic equations of state using either the rest-mass density only, or the rest-mass density and the internal energy as independent variables. New variants of the spacetime evolution and new high resolution shock capturing (HRSC) treatments based on Riemann solvers and slope limiters have been implemented and the results compared with those obtained from previous methods. Finally, we have obtained the first eigenfrequencies of rotating stars in full general relativity and rapid rotation. A long standing problem, such frequencies have not been obtained by other methods. Overall, and to the best of our knowledge, the results presented in this paper represent the most accurate long-term three-dimensional evolutions of relativistic stars available to date.Comment: 19 pages, 17 figure

    Conformal-thin-sandwich initial data for a single boosted or spinning black hole puncture

    Full text link
    Sequences of initial-data sets representing binary black holes in quasi-circular orbits have been used to calculate what may be interpreted as the innermost stable circular orbit. These sequences have been computed with two approaches. One method is based on the traditional conformal-transverse-traceless decomposition and locates quasi-circular orbits from the turning points in an effective potential. The second method uses a conformal-thin-sandwich decomposition and determines quasi-circular orbits by requiring the existence of an approximate helical Killing vector. Although the parameters defining the innermost stable circular orbit obtained from these two methods differ significantly, both approaches yield approximately the same initial data, as the separation of the binary system increases. To help understanding this agreement between data sets, we consider the case of initial data representing a single boosted or spinning black hole puncture of the Bowen-York type and show that the conformal-transverse-traceless and conformal-thin-sandwich methods yield identical data, both satisfying the conditions for the existence of an approximate Killing vector.Comment: 13 pages, 2 figure
    • …
    corecore