554 research outputs found

    Molecular characterization of carbapenem-resistant Acinetobacter species in an Irish university hospital: predominance of Acinetobacter genomic species 3

    Get PDF
    A 30 month prospective study of Acinetobacter species encountered in the Central Pathology Laboratory of St James's Hospital, Dublin, Ireland, was conducted to investigate the prevalence and molecular epidemiology of carbapenem resistance in such isolates. Acinetobacter genomic species 3 (AG3) was found to be the predominant Acinetobacter species (45/114, 39 %) in our institution. A total of 11 % of all Acinetobacter species (12/114) and 22 % of AG3 isolates (10/45) were carbapenem resistant. Carbapenem resistance was mediated by Ambler class D beta-lactamase OXA-23 in all 12 isolates, with insertion sequence ISAba1 found upstream of bla(OXA-23). ISAba1 was also found upstream of bla(ADC-25), which encodes the enzyme AmpC, in an Acinetobacter baumannii isolate, and upstream of the aminoglycoside-acetyltransferase-encoding gene aacC2 in three AG3 isolates. Inter-species plasmidic transfer was most likely involved in the emergence and spread of bla(OXA-23) among the Acinetobacter isolates within our institution. The emergence of carbapenem resistance was associated not only with prior carbapenem use but also with the use of other antimicrobial agents, most notably beta-lactam/beta-lactamase-inhibitor combinations. The study demonstrated the emerging trend of carbapenem resistance in the wider context of the Acinetobacter genus, and reiterated the paramount importance of the prudent use of antimicrobial agents, stringent infection control measures and resistance surveillance of pathogens

    Detection and molecular characterisation of plasmidic AmpC b-lactamases in Klebsiella pneumoniae isolates from a tertiary-care hospital in Dublin, Ireland

    Get PDF
    This study determined the types of AmpC enzymes produced by Klebsiella pneumoniae isolates resistant to third-generation cephalosporins and the clonality of these isolates. The presence of AmpC enzymes was identified by cephalosporin-cloxacillin synergy tests. Genes encoding AmpC enzymes were characterised by PCR and sequencing. Pulsed-field gel electrophoresis (PFGE) was used to type the isolates. Fifteen K. pneumoniae isolates were positive for bla(AmpC), 13 were positive for bla(ACC-1) and two were positive for bla(DHA-1). Production of the DHA-1 enzyme was inducible. The ampR gene was identified upstream of the bla(DHA-1) gene. PFGE demonstrated the polyclonal origin of the isolates carrying bla(ACC-1)

    Chemical telemetry of OH observed to measure interstellar magnetic fields

    Full text link
    We present models for the chemistry in gas moving towards the ionization front of an HII region. When it is far from the ionization front, the gas is highly depleted of elements more massive than helium. However, as it approaches the ionization front, ices are destroyed and species formed on the grain surfaces are injected into the gas phase. Photodissociation removes gas phase molecular species as the gas flows towards the ionization front. We identify models for which the OH column densities are comparable to those measured in observations undertaken to study the magnetic fields in star forming regions and give results for the column densities of other species that should be abundant if the observed OH arises through a combination of the liberation of H2O from surfaces and photodissociation. They include CH3OH, H2CO, and H2S. Observations of these other species may help establish the nature of the OH spatial distribution in the clouds, which is important for the interpretation of the magnetic field results.Comment: 11 pages, 2 figures, accepted by Astrophysics and Space Scienc

    A model problem for conformal parameterizations of the Einstein constraint equations

    Full text link
    We investigate the possibility that the conformal and conformal thin sandwich (CTS) methods can be used to parameterize the set of solutions of the vacuum Einstein constraint equations. To this end we develop a model problem obtained by taking the quotient of certain symmetric data on conformally flat tori. Specializing the model problem to a three-parameter family of conformal data we observe a number of new phenomena for the conformal and CTS methods. Within this family, we obtain a general existence theorem so long as the mean curvature does not change sign. When the mean curvature changes sign, we find that for certain data solutions exist if and only if the transverse-traceless tensor is sufficiently small. When such solutions exist, there are generically more than one. Moreover, the theory for mean curvatures changing sign is shown to be extremely sensitive with respect to the value of a coupling constant in the Einstein constraint equations.Comment: 40 pages, 4 figure

    Decoding attraction: improving vine weevil monitoring by exploiting key sensory cues

    Get PDF
    BACKGROUND Monitoring is an integral component of integrated pest management (IPM) programmes used to inform crop management decisions. Vine weevil, Otiorhynchus sulcatus F. (Coleoptera: Curculionidae), continues to cause economically significant losses in horticultural crops due to an inability to reliably detect the presence of this species before crop damage occurs. To improve vine weevil monitoring we investigated the behavioural responses of adult vine weevils to visual (monitoring tool shade/colour, height and diameter as well as the effect of monitoring tool and plant density) and olfactory (host plant and conspecifics) cues under glasshouse conditions. RESULTS Monitoring tool shade, height and diameter all influenced monitoring tool efficacy, with individuals exhibiting a preference for black, tall and wide monitoring tools. The total number of individuals recorded in monitoring tools increased with monitoring tool density. By contrast, plant density did not influence the number of individuals recorded in monitoring tools. Yew-baited monitoring tools retained a larger number of individuals compared to unbaited ones. Similarly, more vine weevils were recorded in monitoring tools baited with yew and conspecifics than in unbaited monitoring tools or those baited with only yew. Baiting monitoring tools with conspecifics alone did not enhance the number of vine weevils recorded in monitoring tools. CONCLUSIONS Our study confirms that visual and olfactory cues influence vine weevil behaviour. This provides information on key factors that influence vine weevil monitoring tool efficacy and can be used to inform the development of a new monitoring tool for this pest

    Demonstration of the donor characteristics of Si and O defects in GaN using hybrid QM/MM

    Get PDF
    Using hybrid quantum mechanical/molecular mechanical (QM/MM) embedded cluster calculations, we investigate the stabilization of silicon and oxygen dopants in GaN. Formation energies of Si on a Ga site and O on an N site are calculated at two levels of theory using conventional thermochemical and kinetic exchange and correlation density functionals (B97‐2 and BB1k). We confirm the shallow donor nature of these substitutional defects. We find that the 0/1+ transition levels for both Si and O species lie well above the bottom of the conduction band, in agreement with previous supercell‐based simulations. The origin of this artifact is discussed in the context of relevant experimental results and we show how correct in‐gap shallow levels can be ascertained in good agreement with experiment. This is the peer reviewed version of the following article: Demonstration of the donor characteristics of Si and O defects in GaN using hybrid QM/MM, which has been published in final form at https://onlinelibrary.wiley.com/doi/abs/10.1002/pssa.201600445. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Version

    Determination of the Nitrogen Vacancy as a Shallow Compensating Center in GaN Doped with Divalent Metals

    Get PDF
    We report accurate energetics of defects introduced in GaN on doping with divalent metals, focussing on the technologically important case of Mg doping, using a model which takes into consideration both the effect of hole localisation and dipolar polarisation of the host material, and includes a well-defined reference level. Defect formation and ionisation energies show that divalent dopants are counterbalanced in GaN by nitrogen vacancies and not by holes, which explains both the difficulty in achieving p-type conductivity in GaN and the associated major spectroscopic features, including the ubiquitous 3.46 eV photoluminescence line, a characteristic of all lightly divalent metal-doped GaN materials that has also been shown to occur in pure GaN samples. Our results give a comprehensive explanation for the observed behaviour of GaN doped with low concentrations of divalent metals in good agreement with relevant experiment.Comment: 6 pages, 3 figure

    Local Strain Heterogeneity Influences the Optoelectronic Properties of Halide Perovskites

    Get PDF
    Halide perovskites are promising semiconductors for optoelectronics, yet thin films show substantial microscale heterogeneity. Understanding the origins of these variations is essential for mitigating parasitic losses such as non-radiative decay. Here, we probe the structural and chemical origins of the heterogeneity by utilizing scanning X-ray diffraction beamlines at two different synchrotrons combined with high-resolution transmission electron microscopy to spatially characterize the crystallographic properties of individual micrometer-sized perovskite grains in high-quality films. We reveal new levels of heterogeneity on the ten-micrometer scale (super-grains) and even ten-nanometer scale (sub-grain domains). By directly correlating these properties with their corresponding local time-resolved photoluminescence properties, we find that regions showing the greatest luminescence losses correspond to strained regions, which arise from enhanced defect concentrations. Our work reveals remarkably complex heterogeneity across multiple length scales, shedding new light on the defect tolerance of perovskites

    Regulation of phosphorylase kinase by low concentrations of Ca ions upon muscle contraction: the connection between metabolism and muscle contraction and the connection between muscle physiology and Ca-dependent signal transduction

    Get PDF
    It had long been one of the crucial questions in muscle physiology how glycogenolysis is regulated in connection with muscle contraction, when we found the answer to this question in the last half of the 1960s. By that time, the two principal currents of muscle physiology, namely, the metabolic flow starting from glycogen and the mechanisms of muscle contraction, had already been clarified at the molecular level thanks to our senior researchers. Thus, the final question we had to answer was how to connect these two currents. We found that low concentrations of Ca ions (10−7–10−4 M) released from the sarcoplasmic reticulum for the regulation of muscle contraction simultaneously reversibly activate phosphorylase kinase, the enzyme regulating glycogenolysis. Moreover, we found that adenosine 3′,5′-monophosphate (cyclic AMP), which is already known to activate muscle phosphorylase kinase, is not effective in the absence of such concentrations of Ca ions. Thus, cyclic AMP is not effective by itself alone and only modifies the activation process in the presence of Ca ions (at that time, cyclic AMP-dependent protein kinase had not yet been identified). After a while, it turned out that our works have not only provided the solution to the above problem on muscle physiology, but have also been considered as the first report of Ca-dependent protein phosphorylation, which is one of the central problems in current cell biology. Phosphorylase kinase is the first protein kinase to phosphorylate a protein resulting in the change in the function of the phosphorylated protein, as shown by Krebs and Fischer. Our works further showed that this protein kinase is regulated in a Ca-dependent manner. Accordingly, our works introduced the concept of low concentrations of Ca ions, which were first identified as the regulatory substance of muscle contraction, to the vast field of Ca biology including signal transduction
    corecore