14 research outputs found

    Nuclear Interactions Of Super High Energy Cosmic-rays Observed In Mountain Emulsion Chambers

    Get PDF
    Here we present a summary of joint discussions on the results of three mountain experiments with large-scale emulsion chambers, at Pamir, Mt. Fuji and Chacaltaya. Observations cover gamma quanta, hadrons and their clusters (called "families"). The following topics are covered, concerning the characteristics of nuclear interactions the energy region 1014-1016 eV: (i) rapid dissipation seen in atmospheric diffusion of high-energy cosmic-rays; (ii) multiplicity and Pt increase in produced pi-mesons in the fragmentation region; (iii) existence of large-Pt jets, (iv) extremely hadron-rich family of the Centauro type; (v) exotic phenomena in the extremely high energy region beyond 1016 eV. Β© 1981.1911125(1977) Acta Univ. Lodz ser. II, (60)(1973) 13th Int. Cosmic-ray Conf., 3, p. 2228(1975) 14th Int. Cosmic-Ray Conf., 7, p. 2365(1979) AIP Conf. Proc. no. 49, p. 334(1979) 16th Int. Cosmic-ray Conf., 6, p. 344(1979) 16th Int. Cosmic-ray Conf., 7, p. 6816th Int. Cosmic-ray Conf. (1979) 16th Int. Cosmic-ray Conf., 7, p. 284(1979) 16th Int. Cosmic-ray Conf., 7, p. 294(1979) 16th Int. Cosmic-ray Conf., 13, p. 87(1979) 16th Int. Cosmic-ray Conf., 13, p. 92(1979) 16th Int. Cosmic-ray Conf., 13, p. 98(1979) AIP Conf. Proc. no. 49, p. 94(1979) AIP Conf. Proc. no. 49, p. 145(1979) AIP Conf. Proc. no. 49, p. 317(1979) 16th Int. Cosmic-ray Conf., 6, p. 350(1979) 16th Int. Cosmic-ray Conf., 6, p. 356(1979) 16th Int. Cosmic-ray Conf., 6, p. 362Nikolsky, Proc. 9th Int. High-energy Symp. (1978) CSSR, 21. , ToborMiyake, (1978) Proc. 19th Int. Conf. on High-energy physics, p. 433Vernov, (1977) Physica, 3, p. 1601Khristiansen, (1978) JETP Lett., 28, p. 124(1973) 13th Int. Cosmic-ray Conf., 3, p. 2219Izv. Acad. Nauk USSR, ser Phys. (1974) Izv. Acad. Nauk USSR, ser Phys., 38, p. 918(1975) 14th Int. Cosmic-ray Conf., 7, p. 2365(1979) 16th Int. Cosmic-ray Conf., 7, p. 68Dunaevsky, Urysson, Emelyanov, Shorin, Tashimov, (1975) FIAN preprint no. 150Dunaevsky, Urysson, Emelyanov, Shorin, Tashinov, (1979) Acta Univ. Lodz ser. II, (60), p. 199Ivanenko, Kanevskya, Roganova, (1978) JETP Lett., 40, p. 704Ivanenko, Kanevsky, Roganova, (1979) 16th Int. Cosmic-ray Conf., 7, p. 101Ivanenko, Kanevsky, Roganova, (1979) 16th Int. Cosmic-ray Conf., 7, p. 198Wrotniak, (1977) Acta Univ. Lodz ser. II, (60), p. 165Krys, Tomaszevski, Wrotniak, (1979) 16th Int. Cosmic-ray Conf., 7, p. 182Krys, Tomaszevski, Wrotniak, (1979) 16th Int. Cosmic-ray Conf., 7, p. 186Fomin, Kempa, Khristiansen, Levina, Piotrowska, Wdowczyk, (1977) 15th Int. Cosmic-ray Conf., 7, p. 248Fomin, Kempa, Khristiansen, Levina, Piotrowska, Wdowczyk, (1979) 16th Int. Cosmic-ray Conf., 13, p. 82Azimov, Mullazhanov, Yuldashbayev, (1979) 16th Int. Cosmic-ray Conf., 7, p. 262Azimov, Mullazhanov, Yuldashbayev, (1977) Acta Univ. Lodz ser. II, (60), p. 275Kasahara, Torri, Yuda, (1979) 16th Int. Cosmic-ray Conf., 13, p. 70Kasahara, Torii, Yuda, (1979) 16th Int. Cosmic-ray Conf., 13, p. 79Shibata, (1979) 16th Int. Cosmic-ray Conf., 7, p. 176H. Semba, T. Shibata and T. Tabuki, Suppl. Prog. Theor. Phys., to be publishedZhdanov, Roinishvilli, Smorodin, Tomaszevski, (1975) FIAN preprint no. 163Lattes, Fujimoto, Hasegawa, Hadronic interactions of high energy cosmic-ray observed by emulsion chambers (1980) Physics Reports, 65, p. 152Ellsworth, Gaisser, Yodh, (1981) Phys. Rev., 23 D, p. 764Baradzei, Smorodin, (1974) FIAN preprint nos. 103, 104Baradzei, Smorodin, (1977) Acta Univ. Lodz ser. II, (60), p. 51Zhdanov, (1980) FIAN preprint no. 140H. Semba, T. Shibata and T. Tabuki, Suppl. Prog. Theor. Phys., to be publishedShibata, (1980) Phys. Rev., 22 D, p. 100Slavatinsky, (1980) Proc. 7th European Symp. on Cosmic rays, , Leningrad, to be published(1979) AIP Conference Proc. no. 49, p. 145Azimov, Abduzhamilov, Chudakov, (1963) JETP (Sov. Phys.), 45, p. 40713th Int. Cosmic-ray Conf. (1973) 13th Int. Cosmic-ray Conf., 5, p. 326Acharya, Rao, Sivaprasad, Rao, (1979) 16th Int. Cosmic-ray Conf., 6, p. 289Ellsworth, Goodman, Yodh, Gaisser, Stanev, (1981) Phys. Rev., 23 D, p. 771Bariburina, Guseva, Denisova, (1980) Acta Univ. Lodz, 1, p. 9415th Int. Cosmic-ray Conf. (1977) 15th Int. Cosmic-ray Conf., 7, p. 184(1979) AIP Conf. Proc. no. 49, p. 33

    Observation Of A High-energy Cosmic-ray Family Caused By A Centauro-type Nuclear Interaction In The Joint Emulsion Chamber Experiment At The Pamirs

    Get PDF
    An exotic cosmic-ray family event is observed in the large emulsion chamber exposed by the joint at the Pamirs (4360 m above sea level). The family is composed of 120Ξ³-ray-induced showers and 37 hadron-induced showers with individual visible energy exceeding 1 TeV. The decisive feature of the event is the hadron dominance: Ξ£EΞ³, Ξ£E(Ξ³) h, γ€ˆEΞ³, γ€ˆE(Ξ³) h〉, γ€ˆEΞ³Β·Rγ〉 and γ€ˆE(Ξ³)Β·Rh〉 being 298 TeV, 476 TeV, 2.5 TeV, 12.9 TeV, 28.6 GeV m and 173 GeV m, respectively. Most probably the event is due to a Centauro interaction, which occured in the atmosphere at ∼700 m above the chamber. The event will constitute the second beautiful candidate for a Centauro observed at the Pamirs. Β© 1987.1901-2226233Bayburina, (1981) Nucl. Phys. B, 191, p. 1Lattes, Fujimoto, Hasegawa, Hadronic interactions of high energy cosmic-ray observed by emulsion chambers (1980) Physics Reports, 65, p. 151(1984) Trudy FIAN, 154, p. 1Borisov, (1984) Proc. Intern. Symp. on Cosmic rays and particle physics, p. 3. , TokyoRen, (1985) 19th Intern. Cosmic ray Conf., 6, p. 317. , La JollaYamashita, (1985) 19th Intern. Cosmic ray Conf., 6, p. 364. , La JollaTamada, (1977) Nuovo Cimento, 41 B, p. 245T. Shibata et al., to be publishedHillas, (1979) 16th Intern. Cosmic ray Conf., 6, p. 13. , KyotoBattiston, Measurement of the proton-antiproton elastic and total cross section at a centre-of-mass energy of 540 GeV (1982) Physics Letters B, 117, p. 126UA5 Collab., G.J. Alner et al., preprint CERN-EP/85-62Taylor, (1976) Phys. Rev. D, 14, p. 1217Burnett, (1984) Proc. Intern. Symp. on Cosmic rays and particle physics, p. 468. , Toky

    MODEL FOR FORMING THE INTERREGIONAL CLUSTER OF THE ALTERNATIVE ENERGY

    No full text
    The relevance of the research is due to the necessity of improving Russia's environmental and economic policy at the present stage and ensuring sustainable environmental and economic development of the Russian economy. One of the main strategic priorities of the latter is the development of alternative energy, which will contribute to higher energy and environmental efficiency as well as to easing the load on the environment. It will also involve optimization of the structure of the country's balance of energy owing to reducing its dependence on the export of organic fuels and to ensuring innovation development of the energy industry for the long term. With regard to this, the paper is aimed at finding the most efficient way for solving the said problem; as one, it is shaping the interregional cluster of alternative energy that is suggested by the authors. The leading approach to studying this problem is the systemic approach enabling an integrated view of the diverse elements (alternative energy, cluster approach, interregional interaction) that used to be considered individually. In the paper, the necessity of developing alternative energy is justified as one of the focus areas for ensuring Russia's sustainable environmental and economic development which requires the relevant material, labor and financial resources, technologies and equipment. In order to generate these, it is suggested to form the interregional cluster of alternative energy based on one of the four presented interregional interaction models, namely, the multilateral cross-sectoral model which is going to incorporate mutually associated sectors of the economy (producer sectors, supplier sectors, and consumer sectors) located in several regions and aimed at solving the shared problems. The materials of the paper are of practical value for the state and municipal authorities of Russia in terms of improving the policy implemented by them within sustainable development. Moreover, the results of the paper can be taken into account in forming an entire range of regulatory instruments and social and economic development programs for Russia in general and its regions in particular

    Green and Resilient City: Obligatory Requirements and Voluntary Actions in Moscow

    No full text
    The interest to the sustainable development, resilience and smartness of cities and communities has been growing globally since 1980s. City governments have been working out strategies, forming unions and associations, and exchanging experience in facing urbanization challenges and managing city assets sustainably. Authors consider international initiatives and standards providing for the common background needed to work out and implement sustainable development and resilience strategies and management plans as well as to assess and compare results achieved. Major initiatives analyzed include the United Nations HABITAT Program, the International β€œGreen City Index” research, the network of the world’s megacities committed to addressing climate change (C40), the Charter of European Cities and Towns Towards Sustainability (Aalborg Charter) and the Working Group on Environmentally Sustainable Cities of Association of Southeast Asian Nations. A new series of the International Organization for Standardization standards ISO 37000 establishing requirements to management systems for sustainable development of communities and offering guidance in setting aims and objectives and measuring success is considered. Peculiarities of the understanding and use of these standards in Russia are described. Authors study a wide range of legal requirements set by Moscow city government in the period of 1993–2018 and demonstrate advantages and shortcoming of the legal acts passed and enforced. Consider voluntary actions undertaken by the local community, non-governmental organizations and educational establishments. The Chapter demonstrates the need for systematizing patchy policy documents and research projects. The case for the restoration of Moscow water bodies (small rivers) as backbones of the urban ecological network will be elaborated. Β© 2020, Springer Nature Switzerland AG

    MODERN APPROACHES TO ORGANIZATION OF SUPPLEMENTAL FEEDING FOR THE CHILDREN, SUFFERING FROM FOOD INTOLERANCE AND ALIMENTARY DEPENDENT DISEASES

    No full text
    The article highlights the issues related to the prescription of supplemental feeding to the children with various pathology: food intolerance (food allergy, lactase deficiency, gluten sensitive enteropathy) and alimentary dependent diseases (iron deficiency anemia, oligotrophy). The authors substantiated the necessity and expediency of supplemental feeding introduction. They also examined the basic principles of its purpose. The authors described the peculiarities of each of the supplemental feeding groups and noted the expediency of manufactured product use. Along with that, they pointed out to the dependence of terms and order, in which different products and dishes of supplemental feeding are introduced, upon the character of the disease and the nutritive status of a child.Key words: children, supplemental feeding, manufactured Supplemental feeding products, food intolerance, alimentary dependent diseases.</strong

    MODERN APPROACHES TO ORGANIZATION OF SUPPLEMENTAL FEEDING FOR THE CHILDREN, SUFFERING FROM FOOD INTOLERANCE AND ALIMENTARY DEPENDENT DISEASES

    No full text
    The article highlights the issues related to the prescription of supplemental feeding to the children with various pathology: food intolerance (food allergy, lactase deficiency, gluten sensitive enteropathy) and alimentary dependent diseases (iron deficiency anemia, oligotrophy). The authors substantiated the necessity and expediency of supplemental feeding introduction. They also examined the basic principles of its purpose. The authors described the peculiarities of each of the supplemental feeding groups and noted the expediency of manufactured product use. Along with that, they pointed out to the dependence of terms and order, in which different products and dishes of supplemental feeding are introduced, upon the character of the disease and the nutritive status of a child.Key words: children, supplemental feeding, manufactured Supplemental feeding products, food intolerance, alimentary dependent diseases

    Растворимый Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ подавлСния туморогСнности Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° (sST2) – Π½ΠΎΠ²Ρ‹ΠΉ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ Π±ΠΈΠΎΠΌΠ°Ρ€ΠΊΠ΅Ρ€ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² примСнСния сСрдСчной Ρ€Π΅ΡΠΈΠ½Ρ…Ρ€ΠΎΠ½ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ ΠΈ модуляции сСрдСчной сократимости Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… хроничСской сСрдСчной Π½Π΅Π΄ΠΎΡΡ‚Π°Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ

    No full text
    Background: According to numerous studies, from 30% to 50% of patients with chronic heart failure (CHF) are resistant to cardiac resynchronization therapy (CRT) and cardiac contractility modulation (CCM), despite their careful selection in accordance with current guidelines. It is of interest to study neurohormones characterizing myocardial (NT-proBNP) and fibrosis (sST2) as potential additional markers of CHF patients' β€œresponse” to CRT and CCM.Aim: To evaluate the potential to use NT-proBNP and sST2 biomarkers in CHF patients combined with transthoracic echocardiography (Echo) and contrast magnetic resonance imaging (MRI) parameters of the heart to predict a positive response to CRT and CCM devices.Materials and methods: The study included 51 patients (41 men, 10 women) aged 58 Β± 12 years (26 to 79 years) with ischemic heart disease post acute myocardial infarction (n = 22) or non-ischemic cardiomyopathy (n = 29), left ventricle (LV) ejection fraction (EF) 35%, and CHF II–III NYHA functional class despite β‰₯ 3 months of optimized medical therapy. The patients were assessed by serum biomarkers NT-proBNP and sST2 measurements, transthoracic Echo, and contrast- enhanced cardiac MRI. After the diagnostic assessment, CRT defibrillators (CRT-D) were implanted to 39 patients and CCM to 12 patients. After prospective follow-up of the patients for 18 to 24 months, predictors of the response to each device type were analyzed in univariate, multivariate, and ROC analysis.Results: The response to CRT-D was found in 21 (54%) patients, to CCM in 7 (58%) patients. Multivariate analysis showed the following predictors of the response of patients to CRT-D were: 1) sST2 50 ng/mL, 2) NT-proBNP 3900 pg/mL, 3) 3 LV segments with fibrosis (by MRI) and 4) anteroposterior dimension of the left atrium 4.8 cm (by Echo). Any 2 of these 4 characteristics made it possible to predict the response to CRT with an accuracy of 87% (sensitivity 90%, specificity 83%). The predictors of the response to CCM were: 1) sST2 30 ng/ml, 2) LV end diastolic diameter 78 mm (Echo), 3) age 56 years, 4) body mass index 27 kg/m2. Any 2 of these 4 characteristics predicted the positive response to CCM with an accuracy of 92% (sensitivity 86%, specificity 100%).Conclusion: The preoperative sST2 level was the only universal marker of the response to either CRT ( 50 ng/mL) or CCM ( 30 ng/mL) devices in CHF patients with reduced LVEF. The results indicate the potential for improved efficacy of these devices with their earlier implantation after the onset of the heart disease, as well as provided that maximal control CHF in these patients has been achieved.ОбоснованиС. По Π΄Π°Π½Π½Ρ‹ΠΌ многочислСнных исслСдований, ΠΎΡ‚ 30 Π΄ΠΎ 50% ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с хроничСской сСрдСчной Π½Π΅Π΄ΠΎΡΡ‚Π°Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ (Π₯БН) ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ нСвосприимчивы ΠΊ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡŽ сСрдСчной Ρ€Π΅ΡΠΈΠ½Ρ…Ρ€ΠΎΠ½ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ (Π‘Π Π’) ΠΈ модуляции сСрдСчной сократимости (МББ), нСсмотря Π½Π° Ρ‚Ρ‰Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΎΡ‚Π±ΠΎΡ€ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π² соотвСтствии с ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌΠΈ рСкомСндациями. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΠ΅Ρ‚ интСрСс ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π½Π΅ΠΉΡ€ΠΎΠ³ΠΎΡ€ΠΌΠΎΠ½ΠΎΠ², ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰ΠΈΡ… процСссы напряТСния (NT-proBNP) ΠΈ Ρ„ΠΈΠ±Ρ€ΠΎΠ·Π° (sST2) ΠΌΠΈΠΎΠΊΠ°Ρ€Π΄Π°, Π² качСствС Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² ΠΎΡ‚Π²Π΅Ρ‚Π° Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π₯БН Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ устройств Π‘Π Π’ ΠΈ МББ.ЦСль – ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ возмоТности использования Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с Π₯БН Π±ΠΈΠΎΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² NT-proBNP ΠΈ sST2 Π² ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ с ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ Ρ‚Ρ€Π°Π½ΡΡ‚ΠΎΡ€Π°ΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ эхокардиографии (Π­Ρ…ΠΎΠšΠ“) ΠΈ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎ-рСзонансной Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ (МРВ) сСрдца с контрастированиСм для прогнозирования ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΎΡ‚Π²Π΅Ρ‚Π° Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ устройств Π‘Π Π’ ΠΈ МББ.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π’ исслСдованиС Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ 51 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ (41 ΠΌΡƒΠΆΡ‡ΠΈΠ½Π°, 10 ΠΆΠ΅Π½Ρ‰ΠΈΠ½, срСдний возраст составил 58 Β± 12 Π»Π΅Ρ‚ (ΠΎΡ‚ 26 Π΄ΠΎ 79 Π»Π΅Ρ‚)) с постинфарктным кардиосклСрозом (n = 22) ΠΈΠ»ΠΈ Π½Π΅ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΎΠΉ ΠΊΠ°Ρ€Π΄ΠΈΠΎΠΌΠΈΠΎΠΏΠ°Ρ‚ΠΈΠ΅ΠΉ (n = 29), сниТСниСм Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ выброса Π»Π΅Π²ΠΎΠ³ΠΎ ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡ΠΊΠ° ΠΌΠ΅Π½Π΅Π΅ 35% ΠΈ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌΠΈ Π₯БН II–III Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ класса ΠΏΠΎ NYHA, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 3 мСсяцСв ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡŒ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Π°Ρ мСдикамСнтозная тСрапия. ОбслСдованиС ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π²ΠΊΠ»ΡŽΡ‡Π°Π»ΠΎ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π­Ρ…ΠΎΠšΠ“, МРВ сСрдца с контрастированиСм, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π±ΠΈΠΎΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² NT-proBNP ΠΈ sST2. По ΠΎΠΊΠΎΠ½Ρ‡Π°Π½ΠΈΠΈ обслСдования 39 Π±ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ Π±Ρ‹Π»ΠΈ ΠΈΠΌΠΏΠ»Π°Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Π‘Π Π’, 12 – МББ. По Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ проспСктивного наблюдСния Π½Π° протяТСнии 18–24 мСсяцСв с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΎΠ΄Π½ΠΎΡ„Π°ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ, ΠΌΠ½ΠΎΠ³ΠΎΡ„Π°ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ ΠΈ ROC- Π°Π½Π°Π»ΠΈΠ·Π° ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ поиск ΠΏΡ€Π΅Π΄ΠΈΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΎΡ‚Π²Π΅Ρ‚Π° Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° устройств.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€ΠΈΠ·Π½Π°ΠΊΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΎΡ‚Π²Π΅Ρ‚Π° Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π‘Π Π’-устройств с Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ дСфибриллятора (Π‘Π Π’-Π”) Ρ€Π΅Π³ΠΈΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π»ΠΈΡΡŒ Ρƒ 21 (54%) ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°, Π½Π° использованиС МББ – Ρƒ 7 (58%) Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ…. По ΠΈΡ‚ΠΎΠ³Π°ΠΌ ΠΌΠ½ΠΎΠ³ΠΎΡ„Π°ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°, ΠΏΡ€Π΅Π΄ΠΈΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ Ρ‚Π°ΠΊΠΎΠ³ΠΎ ΠΎΡ‚Π²Π΅Ρ‚Π° Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π‘Π Π’-Π” Π±Ρ‹Π»ΠΈ: 1) Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sST2 50 Π½Π³/ΠΌΠ», 2) Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ NT-proBNP 3900 ΠΏΠ³/ΠΌΠ», 3) Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Π² Π»Π΅Π²ΠΎΠΌ ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡ΠΊΠ΅ ΠΌΠ΅Π½Π΅Π΅ 3 сСгмСнтов с Ρ„ΠΈΠ±Ρ€ΠΎΠ·ΠΎΠΌ (ΠΏΠΎ МРВ сСрдца) ΠΈ 4) ΠΏΠ΅Ρ€Π΅Π΄Π½Π΅-Π·Π°Π΄Π½ΠΈΠΉ Ρ€Π°Π·ΠΌΠ΅Ρ€ Π»Π΅Π²ΠΎΠ³ΠΎ прСдсСрдия 4,8 см (ΠΏΠΎ Π­Ρ…ΠΎΠšΠ“). НаличиС 2 ΠΈΠ· 4 Π²Ρ‹ΡˆΠ΅ΠΏΠ΅Ρ€Π΅Ρ‡ΠΈΡΠ»Π΅Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² позволяло ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π‘Π Π’ с Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ 87% (Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ 90%, ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ 83%). ΠŸΡ€Π΅Π΄ΠΈΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΎΡ‚Π²Π΅Ρ‚Π° Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ МББ слуТили: 1) Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ sST2 30 Π½Π³/ΠΌΠ», 2) ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎ-диастоличСский Ρ€Π°Π·ΠΌΠ΅Ρ€ Π»Π΅Π²ΠΎΠ³ΠΎ ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡ΠΊΠ° 78 ΠΌΠΌ (ΠΏΠΎ Π­Ρ…ΠΎΠšΠ“), 3) возраст 56 Π»Π΅Ρ‚, 4) Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ индСкса массы Ρ‚Π΅Π»Π° 27 ΠΊΠ³/ΠΌ2. НаличиС 2 ΠΈΠ· 4 ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² позволяло ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ МББ с Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ 92% (Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ 86%, ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ 100%).Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ЕдинствСнным ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠΌ ΠΎΡ‚ΠΊΠ»ΠΈΠΊΠ° Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π₯БН со сниТСнной Ρ„Ρ€Π°ΠΊΡ†ΠΈΠ΅ΠΉ выброса Π»Π΅Π²ΠΎΠ³ΠΎ ΠΆΠ΅Π»ΡƒΠ΄ΠΎΡ‡ΠΊΠ° Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΎΠ±ΠΎΠΈΡ… Ρ‚ΠΈΠΏΠΎΠ² устройств Π±Ρ‹Π»ΠΈ исходныС значСния sST2 ( 50 Π½Π³/ΠΌΠ» для Π‘Π Π’-Π” ΠΈ 30 Π½Π³/ΠΌΠ» для МББ). Π­Ρ‚ΠΎ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΡƒΡŽ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ эффСктивности Π²Ρ‹ΡˆΠ΅ΠΎΠΏΠΈΡΠ°Π½Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΏΡ€ΠΈ ΠΈΡ… ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π² Π±ΠΎΠ»Π΅Π΅ Ρ€Π°Π½Π½ΠΈΠ΅ сроки ΠΎΡ‚ Π΄Π΅Π±ΡŽΡ‚Π° заболСвания, Π° Ρ‚Π°ΠΊΠΆΠ΅ послС достиТСния максимально Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠΉ компСнсации явлСний Π₯БН Ρƒ Π΄Π°Π½Π½ΠΎΠΉ ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ²
    corecore