29 research outputs found

    Thermoelectric effects in superconducting proximity structures

    Full text link
    Attaching a superconductor in good contact with a normal metal makes rise to a proximity effect where the superconducting correlations leak into the normal metal. An additional contact close to the first one makes it possible to carry a supercurrent through the metal. Forcing this supercurrent flow along with an additional quasiparticle current from one or many normal-metal reservoirs makes rise to many interesting effects. The supercurrent can be used to tune the local energy distribution function of the electrons. This mechanism also leads to finite thermoelectric effects even in the presence of electron-hole symmetry. Here we review these effects and discuss to which extent the existing observations of thermoelectric effects in metallic samples can be explained through the use of the dirty-limit quasiclassical theory.Comment: 14 pages, 10 figures. 374th WE-Heraus seminar: Spin physics of superconducting heterostructures, Bad Honnef, 200

    Calorimetric readout of a superconducting proximity-effect thermometer

    Full text link
    A proximity-effect thermometer measures the temperature dependent critical supercurrent in a long superconductor - normal metal - superconductor (SNS) Josephson junction. Typically, the transition from the superconducting to the normal state is detected by monitoring the appearance of a voltage across the junction. We describe a new approach to detect the transition based on the temperature increase in the resistive state due to Joule heating. Our method increases the sensitivity and is especially applicable for temperatures below about 300 mK.Comment: 10 pages, 5 figures. To appear in the proceedings of the Conference on Micro- and Nanocryogenics (LT25 satellite) organized in Espoo, Finland (2008

    Microscopic nonequilibrium theory of double-barrier Josephson junctions

    Get PDF
    We study nonequilibrium charge transport in a double-barrier Josephson junction, including nonstationary phenomena, using the time-dependent quasiclassical Keldysh Green's function formalism. We supplement the kinetic equations by appropriate time-dependent boundary conditions and solve the time-dependent problem in a number of regimes. From the solutions, current-voltage characteristics are derived. It is understood why the quasiparticle current can show excess current as well as deficit current and how the subgap conductance behaves as function of junction parameters. A time-dependent nonequilibrium contribution to the distribution function is found to cause a non-zero averaged supercurrent even in the presence of an applied voltage. Energy relaxation due to inelastic scattering in the interlayer has a prominent role in determining the transport properties of double-barrier junctions. Actual inelastic scattering parameters are derived from experiments. It is shown as an application of the microscopic model, how the nature of the intrinsic shunt in double-barrier junctions can be explained in terms of energy relaxation and the opening of Andreev channels.Comment: Accepted for Phys. Rev.

    Josephson Current in S-FIF-S Junctions: Nonmonotonic Dependence on Misorientation Angle

    Full text link
    Spectra and spin structures of Andreev interface states in S-FIF-S junctions are investigated with emphasis on finite transparency and misorientation angle between in-plane magnetizations of ferromagnetic layers in a three-layer interface. It is demonstrated that the Josephson current in S-FIF-S quantum point contacts can exhibit a nonmonotonic dependence on the misorientation angle. The characteristic behavior takes place, if the pi-state is the equilibrium state of the junction in the particular case of parallel magnetizations.Comment: 5 pages, 4 figure

    Detecting Current Noise with a Josephson Junction in the Macroscopic Quantum Tunneling Regime

    Full text link
    We discuss the use of a hysteretic Josephson junction to detect current fluctuations with frequencies below the plasma frequency of the junction. These adiabatic fluctuations are probed by switching measurements observing the noise-affected average rate of macroscopic quantum tunneling of the detector junction out of its zero-voltage state. In a proposed experimental scheme, frequencies of the noise are limited by an on-chip filtering circuit. The third cumulant of current fluctuations at the detector is related to an asymmetry of the switching rates.Comment: 26 pages, 10 figures. To appear in Journal of Low Temperature Physics in the proceedings of the ULTI conference organized in Lammi, Finland (2006

    Josephson current in superconductor-ferromagnet structures with a nonhomogeneous magnetization

    Full text link
    We calculate the dc Josephson current IJI_J for two types of superconductor-ferromagnet (S/F) Josephson junctions. The junction of the first type is a S/F/S junction. On the basis of the Eilenberger equation, the Josephson current is calculated for an arbitrary impurity concentration. If hτ1% h\tau\ll1 the expression for the Josephson critical current IcI_c is reduced to that which can be obtained from the Usadel equation (hh is the exchange energy, τ\tau is the momentum relaxation time). In the opposite limit hτ1h\tau\gg1 the superconducting condensate oscillates with period % v_F/h and penetrates into the F region over distances of the order of the mean free path ll. For this kind of junctions we also calculate IJI_J in the case when the F layer presents a nonhomogeneous (spiral) magnetic structure with the period 2π/Q2\pi /Q. It is shown that for not too low temperatures, the π\pi-state which occurs in the case of a homogeneous magnetization (Q=0) may disappear even at small values of QQ. In this nonhomogeneous case, the superconducting condensate has a nonzero triplet component and can penetrate into the F layer over a long distance of the order of ξT=\xi_{T}=% \sqrt{D/2\pi T}. The junction of the second type consists of two S/F bilayers separated by a thin insulating film. It is shown that the critical Josephson current IcI_{c} depends on the relative orientation of the effective exchange field hh of the bilayers. In the case of an antiparallel orientation, IcI_{c} increases with increasing hh. We establish also that in the F film deposited on a superconductor, the Meissner current created by the internal magnetic field may be both diamagnetic or paramagnetic.Comment: 13 pages, 11 figures. To be published in Phys. Rev.

    Symmetries of Pairing Correlations in Superconductor-Ferromagnet Nanostructures

    Full text link
    Using selection rules imposed by the Pauli principle, we classify pairing correlations according to their symmetry properties with respect to spin, momentum, and energy. We observe that inhomogeneity always leads to mixing of even- and odd-energy pairing components. We investigate the superconducting pairing correlations present near interfaces between superconductors and ferromagnets, with focus on clean systems consisting of singlet superconductors and either weak or half-metallic ferromagnets. Spin-active scattering in the interface region induces all of the possible symmetry components. In particular, the long-range equal-spin pairing correlations have odd-frequency s-wave and even-frequency p-wave components of comparable magnitudes. We also analyze the Josephson current through a half-metal. We find analytic expressions and an interesting universality in the temperature dependence of the critical current in the tunneling limit.Comment: 20 pages, 5 figures, added citations, corrected typo

    Nonequilibrium Josephson effect in short-arm diffusive SNS interferometers

    Full text link
    We study non-equilibrium Josephson effect and phase-dependent conductance in three-terminal diffusive interferometers with short arms. We consider strong proximity effect and investigate an interplay of dissipative and Josephson currents co-existing within the same proximity region. In junctions with transparent interfaces, the suppression of the Josephson current appears at rather large voltage, eVΔeV\sim \Delta, and the current vanishes at eVΔeV\geq\Delta. Josephson current inversion becomes possible in junctions with resistive interfaces, where the inversion occurs within a finite interval of the applied voltage. Due to the presence of considerably large and phase-dependent injection current, the critical current measured in a current biased junction does not coincide with the maximum Josephson current, and remains finite when the true Josephson current is suppressed. The voltage dependence of the conductance shows two pronounced peaks, at the bulk gap energy, and at the proximity gap energy; the phase oscillation of the conductance exhibits qualitatively different form at small voltage eV<ΔeV<\Delta, and at large voltage eV>ΔeV>\Delta.Comment: 11 pages, 9 figures, revised version, to be published in Phys. Rev.

    Industrial Resources: Letcher County - Whitesburg

    Get PDF
    Summary of Industrial Resources: Whitesburg, [Kentucky] prepared by the Kentucky Department of Commerce, Division of Research and Planning, Frankfort, Kentucky. 1978. The report includes, but is not limited to, information about: population, labor market, local manufacturing, transportation, utilities, fuels, water, sewage,industrial sites, local government and service, taxes, education and health facilities, housing, communication, recreation, natural resources, markets, and climate

    Manifestly Non-Gaussian Fluctuations in Superconductor-Normal Metal Tunnel Nanostructures

    No full text
    We propose a mesoscopic setup which exhibits strong and manifestly non-Gaussian fluctuations of energy and temperature when suitably driven out of equilibrium. The setup consists of a normal metal island (N) coupled by tunnel junctions (I) to two superconducting leads (S), forming a SINIS structure, and is biased near the threshold voltage for quasiparticle tunneling, eV?2?. The fluctuations can be measured by monitoring the time-dependent electric current through the system. This makes the setup suitable for the realization of feedback schemes which can be used to stabilize the temperature to the desired value.QN/Quantum NanoscienceApplied Science
    corecore