1,199 research outputs found

    Strong Cosmic Censorship and Causality Violation

    Full text link
    We investigate the instability of the Cauchy horizon caused by causality violation in the compact vacuum universe with the topology B×S1×RB\times {\bf S}^{1}\times {\bf R}, which Moncrief and Isenberg considered. We show that if the occurrence of curvature singularities are restricted to the boundary of causality violating region, the whole segments of the boundary become curvature singularities. This implies that the strong cosmic censorship holds in the spatially compact vacuum space-time in the case of the causality violation. This also suggests that causality violation cannot occur for a compact universe.Comment: corrected version, 8 pages, one eps figure is include

    Utilizing a biology-driven approach to map the exposome in health and disease:An essential investment to drive the next generation of environmental discovery

    Get PDF
    BACKGROUND: Recent developments in technologies have offered opportunities to measure the exposome with unprecedented accuracy and scale. However, because most investigations have targeted only a few exposures at a time, it is hypothesized that the majority of the environmental determinants of chronic diseases remain unknown. OBJECTIVES: We describe a functional exposome concept and explain how it can leverage existing bioassays and high-resolution mass spectrometry for exploratory study. We discuss how such an approach can address well-known barriers to interpret exposures and present a vision of next-generation exposomics. DISCUSSION: The exposome is vast. Instead of trying to capture all exposures, we can reduce the complexity by measuring the functional exposome— the totality of the biologically active exposures relevant to disease development—through coupling biochemical receptor-binding assays with affinity purification–mass spectrometry. We claim the idea of capturing exposures with functional biomolecules opens new opportunities to solve critical problems in exposomics, including low-dose detection, unknown annotations, and complex mixtures of exposures. Although novel, biology-based measurement can make use of the existing data processing and bioinformatics pipelines. The functional exposome concept also complements conven-tional targeted and untargeted approaches for understanding exposure-disease relationships. CONCLUSIONS: Although measurement technology has advanced, critical technological, analytical, and inferential barriers impede the detection of many environmental exposures relevant to chronic-disease etiology. Through biology-driven exposomics, it is possible to simultaneously scale up discovery of these causal environmental factors. https://doi.org/10.1289/EHP8327

    Precision Primordial 4^4He Measurement with CMB Experiments

    Full text link
    Big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) are two major pillars of cosmology. Standard BBN accurately predicts the primordial light element abundances (4^4He, D, 3^3He and 7^7Li), depending on one parameter, the baryon density. Light element observations are used as a baryometers. The CMB anisotropies also contain information about the content of the universe which allows an important consistency check on the Big Bang model. In addition CMB observations now have sufficient accuracy to not only determine the total baryon density, but also resolve its principal constituents, H and 4^4He. We present a global analysis of all recent CMB data, with special emphasis on the concordance with BBN theory and light element observations. We find ΩBh2=0.025+0.00190.0026\Omega_{B}h^{2}=0.025+0.0019-0.0026 and Yp=0.250+0.0100.014Y_{p}=0.250+0.010-0.014 (fraction of baryon mass as 4^4He) using CMB data alone, in agreement with 4^4He abundance observations. With this concordance established we show that the inclusion of BBN theory priors significantly reduces the volume of parameter space. In this case, we find ΩBh2=0.0244+0.001370.00284\Omega_{B}h^2=0.0244+0.00137-0.00284 and Yp=0.2493+0.00060.001Y_p = 0.2493+0.0006-0.001. We also find that the inclusion of deuterium abundance observations reduces the YpY_p and ΩBh2\Omega_{B}h^2 ranges by a factor of \sim 2. Further light element observations and CMB anisotropy experiments will refine this concordance and sharpen BBN and the CMB as tools for precision cosmology.Comment: 7 pages, 3 color figures made minor changes to bring inline with journal versio

    Spin relaxation: From 2D to 1D

    Full text link
    In inversion asymmetric semiconductors, spin-orbit interactions give rise to very effective relaxation mechanisms of the electron spin. Recent work, based on the dimensionally constrained D'yakonov Perel' mechanism, describes increasing electron-spin relaxation times for two-dimensional conducting layers with decreasing channel width. The slow-down of the spin relaxation can be understood as a precursor of the one-dimensional limit

    Spin-dephasing anisotropy for electrons in a diffusive quasi-1D GaAs wire

    Get PDF
    We present a numerical study of dephasing of electron spin ensembles in a diffusive quasi-one-dimensional GaAs wire due to the D'yakonov-Perel' spin-dephasing mechanism. For widths of the wire below the spin precession length and for equal strength of Rashba and linear Dresselhaus spin-orbit fields a strong suppression of spin-dephasing is found. This suppression of spin-dephasing shows a strong dependence on the wire orientation with respect to the crystal lattice. The relevance for realistic cases is evaluated by studying how this effect degrades for deviating strength of Rashba and linear Dresselhaus fields, and with the inclusion of the cubic Dresselhaus term

    Discovery of a radio transient in M81

    Get PDF
    We report the discovery of a radio transient in the spiral galaxy M81. The transient was detected in early 2015 as part of a two-year survey of M81 made up of 12 epochs using the Karl G. Jansky Very Large Array. While undetected on 2014 September 12, the source was first detected on 2015 January 2, from which point it remained visible at an approximately constant luminosity of LR, ν = 1.5 ± 0.1 × 1024 erg s−1 Hz−1 at the observing frequency of 6 GHz for at least 2 months. Assuming this is a synchrotron event with a rise-time between 2.6 and 112 d, the peak luminosity (at equipartition) corresponds to a minimum energy of 1044 ≾ Emin ≾ 1046 erg and jet power of Pmin ∼ 1039 erg s−1, which are higher than most known X-ray binaries. Given its longevity, lack of short-term radio variability, and the absence of any multiwavelength counterpart (X-ray luminosity Lx ≾ 1036 erg s−1), it does not behave like known Galactic or extragalactic X-ray binaries. The M81 transient radio properties more closely resemble the unidentified radio transient 43.78+59.3 discovered in M82, which has been suggested to be a radio nebula associated with an accreting source similar to SS 433. One possibility is that both the new M81 transient and the M82 transient may be the birth of a short-lived radio bubble associated with a discrete accretion event similar to those observed from the ULX Holmberg II X-1. However, it is not possible to rule out other identifications including long-term supernova shockwave interactions with the surrounding medium from a faint supernova or a background active galaxy

    Determination of the Deep Inelastic Contribution to the Generalised Gerasimov-Drell-Hearn Integral for the Proton and Neutron

    Full text link
    The virtual photon absorption cross section differences [sigma_1/2-sigma_3/2] for the proton and neutron have been determined from measurements of polarised cross section asymmetries in deep inelastic scattering of 27.5 GeV longitudinally polarised positrons from polarised 1H and 3He internal gas targets. The data were collected in the region above the nucleon resonances in the kinematic range nu < 23.5 GeV and 0.8 GeV**2 < Q**2 < 12 GeV**2. For the proton the contribution to the generalised Gerasimov-Drell-Hearn integral was found to be substantial and must be included for an accurate determination of the full integral. Furthermore the data are consistent with a QCD next-to-leading order fit based on previous deep inelastic scattering data. Therefore higher twist effects do not appear significant.Comment: 6 pages, 3 figures, 1 table, revte

    Observation of a Coherence Length Effect in Exclusive Rho^0 Electroproduction

    Get PDF
    Exclusive incoherent electroproduction of the rho^0(770) meson from 1H, 2H, 3He, and 14N targets has been studied by the HERMES experiment at squared four-momentum transfer Q**2>0.4 GeV**2 and positron energy loss nu from 9 to 20 GeV. The ratio of the 14N to 1H cross sections per nucleon, known as the nuclear transparency, was found to decrease with increasing coherence length of quark-antiquark fluctuations of the virtual photon. The data provide clear evidence of the interaction of the quark- antiquark fluctuations with the nuclear medium.Comment: RevTeX, 5 pages, 3 figure

    Measurement of the Neutron Spin Structure Function g1ng_1^n with a Polarized ^3He Target

    Get PDF
    Results are reported from the HERMES experiment at HERA on a measurement of the neutron spin structure function g1n(x,Q2)g_1^n(x,Q^2) in deep inelastic scattering using 27.5 GeV longitudinally polarized positrons incident on a polarized 3^3He internal gas target. The data cover the kinematic range 0.023<x<0.60.023<x<0.6 and 1(GeV/c)2<Q2<15(GeV/c)21 (GeV/c)^2 < Q^2 <15 (GeV/c)^2. The integral 0.0230.6g1n(x)dx\int_{0.023}^{0.6} g_1^n(x) dx evaluated at a fixed Q2Q^2 of 2.5(GeV/c)22.5 (GeV/c)^2 is 0.034±0.013(stat.)±0.005(syst.)-0.034\pm 0.013(stat.)\pm 0.005(syst.). Assuming Regge behavior at low xx, the first moment Γ1n=01g1n(x)dx\Gamma_1^n=\int_0^1 g_1^n(x) dx is 0.037±0.013(stat.)±0.005(syst.)±0.006(extrapol.)-0.037\pm 0.013(stat.)\pm 0.005(syst.)\pm 0.006(extrapol.).Comment: 4 pages TEX, text available at http://www.krl.caltech.edu/preprints/OAP.htm
    corecore