33 research outputs found

    Status of the connection between unidentified EGRET sources and supernova remnants: The case of CTA 1

    Get PDF
    In this paper we briefly comment on the observational status of the possible physical association between unidentified EGRET sources and supernova remnants (SNRs) in our Galaxy. We draw upon recent results presented in the review by Torres et al. (Physics Reports, 2003), concerning molecular gas in the vicinity of all 19 SNRs found to be positionally coincident with EGRET sources at low Galactic latitudes. In addition, we present new results regarding the supernova remnant CTA~1. Our findings disfavor the possibility of a physical connection with the nearby (in projection) EGRET source. There remains possible, however, that the compact object produced in the supernova explosion be related with the observed γ\gamma-ray flux.Comment: Presented for the proceedings of the II Workshop on Unidentified Gamma-Ray Sources, Hong Kong, June 1-4, 2004. To appear in Astrophysics and Space Science. Some changes to address referee's and readers' remarks. References added. Results unchange

    The Local Bubble and Interstellar Material Near the Sun

    Get PDF
    The properties of interstellar matter (ISM) at the Sun are regulated by our location with respect to the Local Bubble (LB) void in the ISM. The LB is bounded by associations of massive stars and fossil supernovae that have disrupted natal ISM and driven intermediate velocity ISM into the LB interior void. The Sun is located in such a driven ISM parcel. The Local Fluff has a bulk velocity of 19 km/s in the LSR, and an upwind direction towards the center of the gas and dust ring formed by the Loop I supernova remnant interaction with the LB. When the ram pressure of the LIC is included in the total LIC pressure, and if magnetic thermal and cosmic ray pressures are similar, the LIC appears to be in pressure equilibrium with the local hot bubble plasma.Comment: Proceedings of Symposium on the Composition of Matter, honoring Johannes Geiss on the occasion of his 80th birthday. Space Science Reviews (in press

    Exploring morphological correlations among H2CO, 12CO, MSX and continuum mappings

    Full text link
    There are relatively few H2CO mappings of large-area giant molecular cloud (GMCs). H2CO absorption lines are good tracers for low-temperature molecular clouds towards star formation regions. Thus, the aim of the study was to identify H2CO distributions in ambient molecular clouds. We investigated morphologic relations among 6-cm continuum brightness temperature (CBT) data and H2CO (111-110; Nanshan 25-m radio telescope), 12CO (1--0; 1.2-m CfA telescope) and midcourse space experiment (MSX) data, and considered the impact of background components on foreground clouds. We report simultaneous 6-cm H2CO absorption lines and H110\alpha radio recombination line observations and give several large-area mappings at 4.8 GHz toward W49 (50'\times50'), W3 (70'\times90'), DR21/W75 (60'\times90') and NGC2024/NGC2023 (50'\times100') GMCs. By superimposing H2CO and 12CO contours onto the MSX color map, we can compare correlations. The resolution for H2CO, 12CO and MSX data was about 10', 8' and 18.3", respectively. Comparison of H2CO and 12CO contours, 8.28-\mu m MSX colorscale and CBT data revealed great morphological correlation in the large area, although there are some discrepancies between 12CO and H2CO peaks in small areas. The NGC2024/NGC2023 GMC is a large area of HII regions with a high CBT, but a H2CO cloud to the north is possible against the cosmic microwave background. A statistical diagram shows that 85.21% of H2CO absorption lines are distributed in the intensity range from -1.0 to 0 Jy and the \Delta V range from 1.206 to 5 km/s.Comment: 18 pages, 22 figures, 5 tables. Accepted to be published in Astrophysics and Space Scienc

    Results from MAGIC's first observation cycle on galactic sources

    Full text link
    During its Cycle I, the MAGIC telescope targeted about 250 hours several galactic sources sought to be, or detected previously by other experiments in the same energy domain, gamma-ray emitters. This paper reviews some results of such MAGIC observations covering, among others, supernova remnants, the Galactic Center and microquasars. We will concentrate on the recent discovery at very high energy gamma-rays of the microquasar LS I +61 303.Comment: 6 pages, 8 figures. Prepared for "The Multi-messenger Approach to High-energy Gamma-ray Sources", Barcelona (Spain) 4-7 July 200

    Background model systematics for the Fermi GeV excess

    Full text link
    The possible gamma-ray excess in the inner Galaxy and the Galactic center (GC) suggested by Fermi-LAT observations has triggered a large number of studies. It has been interpreted as a variety of different phenomena such as a signal from WIMP dark matter annihilation, gamma-ray emission from a population of millisecond pulsars, or emission from cosmic rays injected in a sequence of burst-like events or continuously at the GC. We present the first comprehensive study of model systematics coming from the Galactic diffuse emission in the inner part of our Galaxy and their impact on the inferred properties of the excess emission at Galactic latitudes 2<b<202^\circ<|b|<20^\circ and 300 MeV to 500 GeV. We study both theoretical and empirical model systematics, which we deduce from a large range of Galactic diffuse emission models and a principal component analysis of residuals in numerous test regions along the Galactic plane. We show that the hypothesis of an extended spherical excess emission with a uniform energy spectrum is compatible with the Fermi-LAT data in our region of interest at 95%95\% CL. Assuming that this excess is the extended counterpart of the one seen in the inner few degrees of the Galaxy, we derive a lower limit of 10.010.0^\circ (95%95\% CL) on its extension away from the GC. We show that, in light of the large correlated uncertainties that affect the subtraction of the Galactic diffuse emission in the relevant regions, the energy spectrum of the excess is equally compatible with both a simple broken power-law of break energy 2.1±0.22.1\pm0.2 GeV, and with spectra predicted by the self-annihilation of dark matter, implying in the case of bˉb\bar{b}b final states a dark matter mass of 495.4+6.449^{+6.4}_{-5.4} GeV.Comment: 65 pages, 28 figures, 7 table

    A complete CO survey of M31

    No full text
    Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe
    corecore