11 research outputs found

    Inhibitive action of Cystine on the corrosion of low alloy steel ASTM A213 grade T22 in sulfamic acid solutions

    Get PDF
    AbstractThe effect of Cystine on the corrosion behavior of low alloy steel ASTM A213 grade T22 in 0.5M sulfamic acid solutions have been investigated by various electrochemical techniques. The study was performed using electrochemical impedance spectroscopy (EIS) and the recent technique electrochemical frequency modulation (EFM). The results of the investigation show that the inhibition efficiency increased with increasing inhibitor concentration, but decreased with increasing the solution temperature and stirring velocity. All the collected results from the two techniques are in good agreements, which confirm the ability of EFM technique for monitoring the corrosion inhibition under the studied conditions

    Adsorption and inhibitive properties of Tryptophan on low alloy steel corrosion in acidic media

    Get PDF
    AbstractThe inhibition efficiency of Tryptophan (Trp) has been studied for the corrosion of low alloy steel ASTM A213 grade T22 in sulfamic (HSO3NH2) and hydrochloric (HCl) acid solutions.Corrosion inhibition was studied using electrochemical methods (electrochemical impedance spectroscopy; EIS and the new technique electrochemical frequency modulation; EFM) and weight loss measurements. The influence of inhibitor concentration, solution temperature, and immersion time on the corrosion resistance of low alloy steel (LAS) has been investigated. Trp proved to be a very good inhibitor for low alloy steel acid corrosion. EFM measurements showed that Trp is a mixed type inhibitor. Trp behaved better in 0.6M HCl than in 0.6M HSO3NH2. Moreover, it was found that the inhibition efficiency increased with increasing inhibitor concentration, while a decrease was detected with the rise of temperature and immersion time. The associated activation energy (Ea) has been determined. The values of Ea indicate that the type of adsorption of Trp on the steel surface in both acids belongs to physical adsorption. The adsorption process was tested using Temkin adsorption isotherm

    Low cost chemical oxygen demand sensor based on electrodeposited nano-copper film

    No full text
    A commercially available copper electrical cable and pure Cu disk were used as substrates for the electrodeposition of copper nanoparticles (nano-Cu). The surface morphology of the prepared nano-Cu/Cu electrodes was investigated by scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDX). The bare copper substrates and the nano-copper modified electrodes were utilized and optimized for electrochemical assay of chemical oxygen demand (COD) using glycine as a standard. A comparison was made among the four electrodes (i.e., bare and nano-Cu coated copper cable and pure copper disk) as potential COD sensors. The oxidation behavior of glycine was investigated on the surface of the prepared sensors using linear sweep voltammetry (LSV). The results indicate significant enhancement of the electrochemical oxidation of glycine by the deposited nano-Cu. The effects of different deposition parameters, such as Cu2+ concentration, deposition potential, deposition time, pH, and scan rate on the response of the prepared sensors were investigated. Under optimized conditions, the optimal nano-Cu based COD sensor exhibited a linear range of 2–595 mg/L, lower limit of detection (LOD) as low as 1.07 mg/L (S/N = 3). The developed method exhibited high tolerance level to Cl− ion where 1.0 M Cl− exhibited minimal influence. The sensor was utilized for the detection of COD in different real water samples. The results obtained were validated using the standard dichromate method

    Effect of Tryptophan on the corrosion behavior of low alloy steel in sulfamic acid

    Get PDF
    Sulfamic acid is widely used in various industrial acid cleaning applications. In the present work, the inhibition effect of Tryptophan (Tryp) on the corrosion of low alloy steel in sulfamic acid solutions at four different temperatures was studied. The investigations involved electrochemical methods (electrochemical impedance spectroscopy; EIS and the new technique electrochemical frequency modulation; EFM) as well as gravimetric measurements. The inhibition efficiency and the apparent activation energy have been calculated in the presence and in the absence of Tryp. It is most probable that the inhibition property of Tryp was due to the electrostatic adsorption of the protonated form of Tryp on the steel surface. Adsorption of the inhibitor molecule, onto the steel surface followed the Temkin adsorption isotherm. The thermodynamic parameters of adsorption were determined and discussed. All of the obtained data from the three techniques were in close agreement, which confirmed that EFM technique can be used efficiently for monitoring the corrosion inhibition under the studied conditions
    corecore