20 research outputs found

    Antimetastatic Potential of PAI-1 Specific RNA Aptamers

    Full text link
    The serine protease inhibitor plasminogen activator inhibitor-1 (PAI-1) is increased in several cancers, including breast, where it is associated with a poor outcome. Metastatic breast cancer has a dismal prognosis, as evidenced by treatment goals that are no longer curative but are largely palliative in nature. PAI-1 competes with integrins and the urokinase plasminogen activator receptor on the surface of breast cancer cells for binding to vitronectin. This results in the detachment of tumor cells from the extracellular matrix, which is critical to the metastatic process. For this reason, we sought to isolate RNA aptamers that disrupt the interaction between PAI-1 and vitronectin. Through utilization of combinatorial chemistry techniques, aptamers have been selected that bind to PAI-1 with high affinity and specificity. We identified two aptamers, WT-15 and SM-20, that disrupt the interactions between PAI-1 and heparin, as well as PAI-1 and vitronectin, without affecting the antiprotease activity of PAI-1. Furthermore, SM-20 prevented the detachment of breast cancer cells (MDA-MB-231) from vitronectin in the presence of PAI-1, resulting in an increase in cellular adhesion. Therefore, the PAI-1 aptamer SM-20 demonstrates therapeutic potential as an antimetastatic agent and could possibly be used as an adjuvant to traditional chemotherapy for breast cancer.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78126/1/oli.2008.0177.pd

    First Sagittarius A* Event Horizon Telescope results. I. The shadow of the supermassive black hole in the center of the Milky Way

    Get PDF
    Galaxie

    Influence of three types of automated coagulometers on the international sensitivity index (ISI) of rabbit, human and recombinant human tissue factor preparations

    No full text
    Five tissue factor reagents and three types of automated instruments for prothrombin time (PT) determination were studied in an international multicenter collaborative exercise. The purpose of this work was to determine the international sensitivity index (ISI) for each combination of reagent and instrument against the international reference preparation RBT/90. Each type of instrument was used by 3 or 4 centers to assess the interlaboratory variation of the ISI. The interlaboratory variation of the ISI for each combination of reagent and instrument ranged between 0.4% and 7.8% coefficient of variation. For three reagents, the mean ISI values for ACL (nephelometric) and STA (mechanical) were practically identical, but the mean ISI values for MLA (photo-optical) were at least 10% higher. For two other reagents prepared from rabbit tissue, the mean ISI values increased in the order ACL, STA, MLA. The widest range of mean ISI values was noted with one rabbit tissue factor reagent: 1.68 for ACL and 2.00 for MLA. Exclusion of patient specimens with INR 4.5 determined by the international reference preparation resulted in a slight decrease of the mean ISI. The interlaboratory variation of the International Normalized Ratio (INR) was assessed from the results obtained with common lyophilized and deep-frozen plasmas. The use of instrument-specific ISI values resulted in reduced interlaborarory variation of the INR. It is recommended that thromboplastin manufacturers provide instrument-specific ISI values

    Multicenter evaluation of lyophilized and deep-frozen plasmas for assignment of the International Normalized Ratio

    No full text
    The interlaboratory variation of the International Normalized Ratio (INR) in various external quality assessment schemes is still relatively high. This is partly caused by inaccuracy of manufacturers' stated International Sensitivity Index (ISI) and/or local instrumentation effects. The interlaboratory variation and accuracy of INR determinations may be improved by a local calibration procedure based on lyophilized plasmas with assigned INRs. The purpose of the present study was to determine INR values for different types of lyophilized plasmas to be used for local calibration. A total of 13 lyophilized plasmas (one normal, six from coumarin-treated patients, six artificially depleted) were analyzed by 10 laboratories, each using five calibrated prothrombin time (PT) systems. INRs were calculated for each plasma using each laboratory's specific ISI and mean normal prothrombin time values. In the same way, five deep-frozen pooled plasmas from coumarin treated patients were analyzed. There were significant INR differences for the lyophilized plasmas between the prothrombin time systems. The differences were relatively small for the deep-frozen coumarin plasmas (CV 2.6-3.3%) and three lyophilized coumarin plasmas from one manufacturer (CV 3.7-4.8%). Important INR differences were observed for three lyophilized coumarin plasmas from another manufacturer (CV 9.5-14.1%) and several artificially depleted plasmas (CV 5.3-12.8%). The citrate concentrations in the artificially depleted plasmas were lower than those in the normal and coumarin plasmas. These differences should be considered in the selection and certification of plasmas as calibrants for local calibration of PT systems. The lyophilized plasmas' INR values obtained in the present study will be used for a field study of local PT calibration to assess their efficacy
    corecore