31 research outputs found

    The endangered northern bettong, Bettongia tropica, performs a unique and potentially irreplaceable dispersal role for truffle ectomycorrhizal fungi

    Get PDF
    Organisms that are highly connected in food webs often perform unique and vital functions within ecosystems. Understanding the unique ecological roles played by highly connected organisms and the consequences of their loss requires a comprehensive understanding of the functional redundancy among organisms. One important, yet poorly understood, food web is that between truffle‐forming ectomycorrhizal fungi and their mammalian consumers and dispersers. Mammalian fungal specialists rely on fungi as a food source, and they consume and disperse a higher diversity and abundance of fungi than do mycophagous mammals with generalist diets. Therefore, we hypothesise that mammalian fungal specialists are functionally distinct because they disperse a set of fungal taxa not fully nested within the set consumed by the combined generalist mammalian community (i.e. functional redundancy of fungal dispersal is limited). Using high‐throughput sequencing, we compared the fungal composition of 93 scats from the endangered fungal specialist northern bettong (Bettongia tropica) and 120 scats from nine co‐occurring generalist mammal species across three sites and three seasons. Compared with other generalist mammals, B. tropica consumed a more diverse fungal diet with more unique taxa. This aligns with our hypothesis that B. tropica performs a unique dispersal function for ectomycorrhizal truffle fungi. Additionally, modelling of mammalian extinctions predicted rapid loss of food web connections which could result in loss of gene flow for truffle taxa. Our results suggest that this system is sensitive to the extinction of highly connected specialist species like B. tropica and their loss could have consequences for ectomycorrhizal truffle fungal diversity. This suggests that the conservation of fungal specialists is imperative to maintaining ectomycorrhizal fungal diversity and healthy plant‐mycorrhizal relationships

    The STAR experiment at the relativistic heavy ion collider

    Full text link

    Differences in Tropical Peat Soil Physical and Chemical Properties Under Different Land Uses : A Systematic Review and Meta-analysis

    No full text
    Drainage and conversion of natural peatlands, which increases fire frequency, haze air pollution and carbon emissions, also affects the physical and chemical properties of peat soils. Although there has been continued interest in research on tropical peat soil properties, no attempt has yet been made to synthesise these results. We conducted a systematic literature review and meta-analysis of sixty-six papers published in English language academic literature to explore the current state of knowledge of peat soil properties of Southeast Asia and to compare physical and chemical peat properties (e.g. bulk density, carbon content, pH) under different land uses and depths. Most of these studies were undertaken in Indonesia (56.1%) and Malaysia (28.8%), where substantial tracts of peat soils occur. We extracted data from these papers to calculate the mean of each peat property and compare results between land uses and depths. Linear mixed-effects models were used to test the significance of land use and depth on each peat property. We found that bulk density (44 papers), carbon (C) content (43 papers), pH (42 papers) and nitrogen (N) content (39 papers) were the most widely reported, while other properties remain less studied. Bulk density, pH, phosphorus (P) and calcium (Ca) showed significant differences between land uses and depths. Fibre fraction, potassium (K), iron (Fe) and zinc (Zn) levels showed a significant difference between land uses only, while N differed significantly only between soil depths. Other physical properties such as hydraulic conductivity, porosity, woody fraction, amorphic fraction and chemical properties such as electrical conductivity (EC), C, ammonium (NH4+), nitrate (NO3−), available nitrogen (available N), magnesium (Mg), aluminium (Al), copper (Cu), manganese (Mn), sulphur (S) and silicon (Si) showed no significant differences between land uses or depths. This review identifies key research gaps, including underrepresented geographic areas and peat properties and highlights the need for standardised methodologies for measuring peat soil properties.</p

    The endangered northern bettong, Bettongia tropica, performs a unique and potentially irreplaceable dispersal role for truffle ectomycorrhizal fungi

    No full text
    Organisms that are highly connected in food webs often perform unique and vital functions within ecosystems. Understanding the unique ecological roles played by highly connected organisms and the consequences of their loss requires a comprehensive understanding of the functional redundancy among organisms. One important, yet poorly understood, food web is that between truffle‐forming ectomycorrhizal fungi and their mammalian consumers and dispersers. Mammalian fungal specialists rely on fungi as a food source, and they consume and disperse a higher diversity and abundance of fungi than do mycophagous mammals with generalist diets. Therefore, we hypothesise that mammalian fungal specialists are functionally distinct because they disperse a set of fungal taxa not fully nested within the set consumed by the combined generalist mammalian community (i.e. functional redundancy of fungal dispersal is limited). Using high‐throughput sequencing, we compared the fungal composition of 93 scats from the endangered fungal specialist northern bettong (Bettongia tropica) and 120 scats from nine co‐occurring generalist mammal species across three sites and three seasons. Compared with other generalist mammals, B. tropica consumed a more diverse fungal diet with more unique taxa. This aligns with our hypothesis that B. tropica performs a unique dispersal function for ectomycorrhizal truffle fungi. Additionally, modelling of mammalian extinctions predicted rapid loss of food web connections which could result in loss of gene flow for truffle taxa. Our results suggest that this system is sensitive to the extinction of highly connected specialist species like B. tropica and their loss could have consequences for ectomycorrhizal truffle fungal diversity. This suggests that the conservation of fungal specialists is imperative to maintaining ectomycorrhizal fungal diversity and healthy plant‐mycorrhizal relationships
    corecore