8 research outputs found

    The local structure of SO2 and SO3 on Ni(1 1 1): a scanned-energy mode photoelectron diffraction study

    Get PDF
    O 1s and S 2p scanned-energy mode photoelectron diffraction (PhD) data, combined with multiple-scattering simulations, have been used to determine the local adsorption geometry of the SO2 and SO3 species on a Ni(1 1 1) surface. For SO2, the application of reasonable constraints on the molecular conformation used in the simulations leads to the conclusion that the molecule is centred over hollow sites on the surface, with the molecular plane essentially parallel to the surface, and with both S and O atoms offset from atop sites by almost the same distance of 0.65 Ã…. For SO3, the results are consistent with earlier work which concluded that surface bonding is through the O atoms, with the S atom higher above the surface and the molecular symmetry axis almost perpendicular to the surface. Based on the O 1s PhD data alone, three local adsorption geometries are comparably acceptable, but only one of these is consistent with the results of an earlier normal-incidence X-ray standing wave (NIXSW) study. This optimised structural model differs somewhat from that originally proposed in the NIXSW investigation

    The local structure of the azobenzene aniline reaction intermediate on TiO2 110

    Get PDF
    Scanned-energy mode photoelectron diffraction (PhD) and near-edge X-ray absorption fine structure (NEXAFS) have been used to study the surface species, previously proposed to be phenyl imide, C6H5N–, on rutile TiO2(110) following exposure to either azobenzene or aniline. All measurements are consistent with the two reactants forming a common surface species in the same local adsorption site. N K-edge NEXAFS confirms the scission of the Ndouble bond; length as m-dashN bond in azobenzene, while C K-edge NEXAFS shows the phenyl ring to be intact with the molecular plane tilted relative to the surface normal and not aligned in either principle azimuth of the surface. N 1s PhD data indicate that the N atom bonds atop a surface five-fold-coordinated Ti atom, most probably at a Tisingle bondN bondlength of 1.77 ± 0.05 Å, and not bridging two such atoms, as had been suggested. This atop geometry is favoured by recent density functional theory (DFT) calculations, but more quantitative aspects of the DFT result are not in agreement with the conclusions of our experimental study

    Quantitative local structure determination of R,R-tartaric acid on Cu(110): Monotartrate and bitartrate phases

    Get PDF
    The local adsorption site of the monotartrate and bitartrate species of R,R-tartaric acid deposited on Cu(110) have been determined by scanned-energy mode photoelectron diffraction (PhD). In the monotartrate phase the molecule is found to adsorb upright through the O atoms of the single deprotonated carboxylic acid (carboxylate) group, which are located in different off-atop sites with associated Cu―O bond lengths of 1.92 ± 0.08 Å and 1.93 ± 0.06 Å; the plane of the carboxylate group is tilted by 17 ± 6° off the surface normal. The bitartrate species adopts a ‘lying down’ orientation, bonding to the surface through all four O atoms of the two carboxylate groups, also in off-atop sites. Three slightly different models give comparably good fits to the PhD data, but only one of these is similar to that predicted by earlier density functional theory calculations. This model is found to have Cu―O bond lengths of 1.93 ± 0.08 Å and 1.95 ± 0.08 Å, while the planes of the carboxylate groups are tilted by 38 ± 6° from the surface normal. -------------------------------------------------------------------------------
    corecore