39 research outputs found

    Vortex waistlines and long range fluctuations

    Get PDF
    We examine the manner in which a linear potential results from fluctuations due to vortices linked with the Wilson loop. Our discussion is based on exact relations and inequalities between the Wilson loop and the vortex and electric flux order parameters. We show that, contrary to the customary naive picture, only vortex fluctuations of thickness of the order of the spatial linear size of the loop are capable of producing a strictly linear potential. An effective theory of these long range fluctuations emerges naturally in the form of a strongly coupled Z(N) lattice gauge theory. We also point out that dynamical fermions introduced in this medium undergo chiral symmetry breaking.Comment: 17 pages, LaTex file with 7 eps figures, revised references, minor comments adde

    Fixed twist dynamics of SO(3) gauge theory

    Get PDF
    We perform a throughout study of 3+1 dim. SO(3) LGT for any fixed-twist background. We concentrate in particular on the physically significant trivial and 1-twist sectors. Introducing a Z(2) monopole chemical potential the 1st order bulk transition is moved down in the strong coupling region and weakened to 2nd order in the 4-dim Ising model universality class. In this extended phase diagram we gain access to a confined phase in every fixed twist sector of the theory. The Pisa disorder operator is employed together with the Polyakov loop to study the confinement-deconfinement transition in each sector. Due to the specific properties of both operators, most results can be used to gain insight in the ergodic theory, where all twist sectors should be summed upon. An explicit mapping of each fixed twist theory to effective positive plaquette models with fixed twisted boundary conditions is applied to better establish their properties in the different phases.Comment: 20 pages, 11 Figures. Minor changes in text and figures, to appear in Eur.Phys.J.

    Nuclear transparency from quasielastic A(e,e'p) reactions uo to Q^2=8.1 (GeV/c)^2

    Get PDF
    The quasielastic (e,e′^\primep) reaction was studied on targets of deuterium, carbon, and iron up to a value of momentum transfer Q2Q^2 of 8.1 (GeV/c)2^2. A nuclear transparency was determined by comparing the data to calculations in the Plane-Wave Impulse Approximation. The dependence of the nuclear transparency on Q2Q^2 and the mass number AA was investigated in a search for the onset of the Color Transparency phenomenon. We find no evidence for the onset of Color Transparency within our range of Q2Q^2. A fit to the world's nuclear transparency data reflects the energy dependence of the free proton-nucleon cross section.Comment: 11 pages, 6 figure

    Measurement of longitudinal and transverse cross sections in the 3He(e,e′π+)3H reaction at W=1.6 GeV

    Get PDF
    The coherent 3He(e,e′π+)3H reaction was measured at Q2=0.4 (GeV/c)2 and W=1.6 GeV for two values of the virtual photon polarization, ε, allowing the separation of longitudinal and transverse cross sections. The results from the coherent process on 3He were compared to H(e,e′π+)n data taken at the same kinematics. This marks the first direct comparison of these processes. At these kinematics (pπ=1.1 GeV/c), pion rescattering from the spectator nucleons in the 3He(e,e′π+)3H process is expected to be small, simplifying the comparison to π+ production from the free proton

    Coherent π0 photoproduction on the deuteron up to 4 GeV

    Get PDF
    The differential cross section for 2H(γ,d)π0 has been measured at deuteron center-of-mass angles of 90° and 136°. This work reports the first data for this reaction above a photon energy of 1 GeV, and permits a test of the apparent constituent counting rule and reduced nuclear amplitude behavior as observed in elastic ed scattering. Measurements were performed up to a photon energy of 4.0 GeV, and are in good agreement with previous lower energy measurements. Overall, the data are inconsistent with both constituent-counting rule and reduced nuclear amplitude predictions

    Quasielastic (e,e′p) reaction on 12C,56Fe, and 197Au

    Get PDF
    We report the results from a systematic study of the quasielastic (e,e′p) reaction on 12C, 56Fe, and 197Au performed at Jefferson Lab. We have measured nuclear transparency and extracted spectral functions (corrected for radiation) over a Q2 range of 0.64–3.25 (GeV∕c)2 for all three nuclei. In addition, we have extracted separated longitudinal and transverse spectral functions at Q2 of 0.64 and 1.8 (GeV∕c)2 for these three nuclei (except for 197Au at the higher Q2). The spectral functions are compared to a number of theoretical calculations. The measured spectral functions differ in detail but not in overall shape from most of the theoretical models. In all three targets the measured spectral functions show considerable excess transverse strength at Q2=0.64 (GeV∕c)2, which is much reduced at 1.8 (GeV∕c)2

    Separated spectral functions for the quasifree 12C(e,e′p) reaction

    Get PDF
    A separation of the longitudinal and transverse 12C(e,e′p) cross sections in the quasifree region has been performed in parallel kinematics at Q2 of 0.64 and 1.8 GeV2 for initial proton momentum <80 MeV. The separated transverse and longitudinal spectral functions at Q2=0.64GeV2 show significant differences for missing energy between 25 and 60 MeV indicating a breakdown in the single nucleon knockout picture. The transverse spectral functions exhibit definite momentum transfer dependence

    Measurements of Deuteron Photodisintegration up to 4.0 GeV

    Get PDF
    The first measurements of the differential cross section for the d(γ,p)n reaction up to 4.0 GeV were performed at the Continuous Electron Beam Accelerator Facility (CEBAF) at Thomas Jefferson Laboratory. We report the cross sections at the proton center-of-mass angles of 36°, 52°, 69°, and 89°. These results are in reasonable agreement with previous measurements at lower energy. The 89° and 69° data show constituent-counting-rule behavior up to 4.0 GeV photon energy. The 52° and 36° data disagree with the counting-rule behavior. The quantum chromodynamics (QCD) model of nuclear reactions involving reduced amplitudes disagrees with the present data.U.S. Department of Energy, National Science Foundatio
    corecore