22 research outputs found

    Radiocarbon and stable isotope evidence of dietary change from the Mesolithic to the Middle Ages in the iron gates: New results from Lepenski Vir

    Get PDF
    A previous radiocarbon dating and stable isotope study of directly associated ungulate and human bone samples from Late Mesolithic burials at Schela Cladovei in Romania established that there is a freshwater reservoir effect of approximately 500 yr in the Iron Gates reach of the Danube River valley in southeast Europe. Using the delta(15)N values as an indicator of the percentage of freshwater protein in the human diet, the C-14 data for 24 skeletons from the site of Lepenski Vir were corrected for this reservoir effect. The results of the paired C-14 and stable isotope measurements provide evidence of substantial dietary change over the period from about 9000 BP to about 300 BR The data from the Early Mesolithic to the Chalcolithic are consistent with a 2-component dietary system, where the linear plot of isotopic values reflects mixing between the 2 end-members to differing degrees. Typically, the individuals of Mesolithic age have much heavier delta(15)N signals and slightly heavier delta(13)C, while individuals of Early Neolithic and Chalcolithic age have lighter delta(15)N and delta(13)C values. Contrary to our earlier suggestion, there is no evidence of a substantial population that had a transitional diet midway between those that were characteristic of the Mesolithic and Neolithic. However, several individuals with "Final Mesolithic" C-14 ages show delta(15)N and delta(13)C values that are similar to the Neolithic dietary pattern. Provisionally, these are interpreted either as incomers who originated in early farming communities outside the Iron Gates region or as indigenous individuals representing the earliest Neolithic of the Iron Gates. The results from Roman and Medieval age burials show a deviation from the linear function, suggesting the presence of a new major dietary component containing isotopically heavier carbon. This is interpreted as a consequence of the introduction of millet into the human food chain

    Assessment of oxygen plasma ashing as a pre-treatment for radiocarbon dating

    Get PDF
    This study investigates the potential of low-temperature oxygen plasma ashing as a technique for decontaminating charcoal and wood samples prior to radiocarbon dating. Plasma ashing is demonstrated to be rapid, controllable and surface-specific, and clear differences are identified in the rate of ashing in different organic materials. However, the ability of plasma ashing to selectively remove these different components is limited in heterogeneous sample matrices. This is because oxidation is confined to the immediate sample surface. Comparison of radiocarbon dates obtained from identical aliquots of contaminated ancient charcoal pre-treated by acid-base-acid (ABA), acid-base-oxidation-stepped combustion (ABOx-SC) and plasma ashing suggests that the technique performs as well as the ABA pre-treatment but does not remove as much contamination as the ABOx-SC technique. Plasma-ashing may be particularly useful in cases where sample size is limiting

    Radiometric dates of uplifted marine fauna in Greece:Implications for the interpretation of recent earthquake and tectonic histories using lithophagid dates

    Get PDF
    n AD 365 a great (Mw N 8) earthquake lifted up western Crete, exposing a shoreline encrusted by marine organisms, and up to 10 m of marine substrate beneath it. Radiocarbon ages determined for corals and bryozoans exposed between the paleo-shoreline and present sea level are consistent, within measurement error, with each other and with the date of the earthquake. But radiocarbon ages determined for the boring bivalve Lithophaga lithophaga found on the same substrate are at least 350 years, and up to 2000 years, older than the date of the earthquake that lifted them above sea level. These observations reveal two important effects that limit the use of radiocarbon lithophagid ages in tectonic and paleoseismological studies. The first is that the exceptional preservation potential of lithophagids allows them to remain intact and in situ long after natural death, while the substrate continues to be colonised until eventual uplift. The second, which we confirm with radiocarbon analysis of museum specimens of known age, is the incorporation of old (14C-free) carbon into lithophagid shells from the limestone host rock into which the lithophagids bored. The two effects are both significant in Crete and central Greece, and can cause the radiocarbon lithophagid ages to be up to 2000 years older than the uplift event which exposed them. Understanding these effects is important because lithophagids are far more abundantly preserved, and used to date uplift, than most other marine organisms. This study shows that they can rarely be used to distinguish uplift events, or date them to better than 1000 years, or even to distinguish whether observed uplift occurred in a single or in multiple events. After taking account of these uncertainties, the ages of the lithophagids are, however, consistent with the hypothesis that the highest prominent marine notches and exposed lithophagid holes within a few metres of sea level in Greece formed when sea level became relatively stable ~ 6000 years ago, following rapid rise after the last glacial maximum

    New AMS radiocarbon dates from Kostenki 12

    No full text

    The early Lateglacial re-colonization of Britain: new radiocarbon evidence from Gough\u27s Cave, southwest England

    No full text
    Gough\u27s Cave is still Britain\u27s most significant Later Upper Palaeolithic site. New ultrafiltered radiocarbon determinations on bone change our understanding of its occupation, by demonstrating that this lasted for only a very short span of time, at the beginning of the Lateglacial Interstadial (Greenland Interstadial 1 (GI-1: Bølling and Allerød)). The application of Bayesian modelling to the radiocarbon dates from this, and other sites from the period in southwest England, suggests that re-colonization after the Last Glacial Maximum took place only after 14,700 cal BP, and is, therefore, more recent than that of the Paris Basin and the Belgian Ardennes. On their own, the radiocarbon determinations cannot tell us whether re-colonization was synchronous with, just prior to, or after, Lateglacial warming. Isotopic studies of humanly-modified mammalian tooth enamel may be one way forward

    High-precision radiocarbon measurements of contemporaneous tree-ring wood from the British Isles and New Zealand: AD 1850-950.

    Get PDF
    The University of Waikato, Hamilton, New Zealand and The Queen’s University of Belfast, Northern Ireland radiocarbon dating laboratories have undertaken a series of high-precision measurements on decadal samples of dendrochronologically dated oak (Quercus petraea) from Great Britain and cedar (Libocedrus bidwillii) and silver pine (Lagarostrobos colensoi) from New Zealand. The results show an average hemispheric offset over the 900 yr of measurement of 40 ± 13 yr. This value is not constant but varies with a periodicity of about 130 yr. The Northern Hemisphere measurements confirm the validity of the Pearson et al. (1986) calibration dataset

    Testing the ABOx-SC method: Dating known-age charcoals associated with the Campanian Ignimbrite

    No full text
    Over the past decade several studies have shown the improvements to radiocarbon chronologies that arise when Acid Base Oxidation-Stepped Combustion (ABOx-SC, Bird et al., 1999) pretreatment methods are applied to the dating of charcoal thought to be >30 ka BP. However, few studies have examined whether the use of ABOx-SC produces dates that are not only older, but accurate on known-age charcoal samples that could not be decontaminated using the routine AcideBaseeAcid (ABA) pretreatment protocol. In this study we date 9 charcoal fragments found below the Campanian Ignimbrite (CI) tephra layer, dated by 40Ar/39Ar to 39,230 ! 45 years (De Vivo et al., 2001; Rolandi et al., 2003), from three Palaeolithic sites. When treated with the ABOx-SC pretreatment protocol, the radiocarbon dates provide an accurate terminus post quem for the CI. In contrast, the ABA protocol consistently underestimates the age of the tephra. These results serve as a warning against the use of consistency as an indicator for reliability, demonstrate that the routine ABA method is not suf!cient to decontaminate charcoal samples from sites of Palaeolithic age, and show that ABOx-SC produces not only older, but accurate age estimate
    corecore