58 research outputs found

    Waste management in the coastal areas of the ASEAN region: roles of governments, banking institutions, donor agencies, private sector and communities

    Get PDF
    Waste disposal, Marine pollution, Pollution control, Coastal zone management, Environment management, ASEAN,

    The coastal environmental profile of Brunei Darussalam: resource assessment and management issues

    Get PDF
    Coastal zone management, Resource development, Coastal zone, Environmental profile, Brunei Darussalam,

    Towards sustainable development of the coastal resources of Lingayen Gulf, Phlilppines

    Get PDF
    Coastal zone management, Resource development, Philippines, Lingayen Gulf,

    The coastal resources of Brunei Darussalam: status, utilization and management

    Get PDF
    Marine resources, Resource management, Coastal zone management, Brunei Darussalam,

    Quantum, cyclic and particle-exchange heat engines

    Full text link
    Differences between the thermodynamic behavior of the three-level amplifier (a quantum heat engine based on a thermally pumped laser) and the classical Carnot cycle are usually attributed to the essentially quantum or discrete nature of the former. Here we provide examples of a number of classical and semiclassical heat engines, such as thermionic, thermoelectric and photovoltaic devices, which all utilize the same thermodynamic mechanism for achieving reversibility as the three-level amplifier, namely isentropic (but non-isothermal) particle transfer between hot and cold reservoirs. This mechanism is distinct from the isothermal heat transfer required to achieve reversibility in cyclic engines such as the Carnot, Otto or Brayton cycles. We point out that some of the qualitative differences previously uncovered between the three-level amplifier and the Carnot cycle may be attributed to the fact that they are not the same 'type' of heat engine, rather than to the quantum nature of the three-level amplifier per se.Comment: 9 pages. Proceedings of 'Frontiers of Quantum and Mesoscopic Thermodynamics', Prague 200

    Final State Rescattering and Color-suppressed \bar B^0-> D^{(*)0} h^0 Decays

    Full text link
    The color-suppressed \bar B^0-> D^{(*)0}\pi^0, D^{(*)0}\eta, D^0\omega decay modes have just been observed for the first time. The rates are all larger than expected, hinting at the presence of final state interactions. Considering \bar B^0-> D^{(*)0}\pi^0 mode alone, an elastic D^{(*)}\pi -> D^{(*)}\pi rescattering phase difference \delta \equiv \delta_{1/2} - \delta_{3/2} \sim 30^\circ would suffice, but the \bar B^0-> D^{(*)0}\eta, D^0\omega modes compel one to extend the elastic formalism to SU(3) symmetry. We find that a universal a_2/a_1=0.25 and two strong phase differences 20^\circ \sim \theta < \delta < \delta^\prime \sim 50^\circ can describe both DP and D^*P modes rather well; the large phase of order 50^\circ is needed to account for the strength of {\it both} the D^{(*)0}\pi^0 and D^{(*)0}\eta modes. For DV modes, the nonet symmetry reduces the number of physical phases to just one, giving better predictive power. Two solutions are found. We predict the rates of the \bar B^0-> D^{+}_s K^-, D^{*+}_s K^-, D^0\rho^0, D^+_s K^{*-} and D^0\phi modes, as well as \bar B^0-> D^{0}\bar K^0, D^{*0}\bar K^0, D^{0}\bar K^{*0} modes. The formalism may have implications for rates and CP asymmetries of charmless modes.Comment: REVTeX4, 18 pages, 5 figures, to appear in Phys. Rev.
    • …
    corecore