353 research outputs found

    ALTERED PHOSPHORYLATION STATUS, PHOSPHOLIPID-METABOLISM AND GLUCONEOGENESIS IN THE HOST LIVER OF RATS WITH PROSTATE-CANCER - A P-31 MAGNETIC-RESONANCE SPECTROSCOPY STUDY

    Get PDF
    31P magnetic resonance spectroscopy (MRS) in vivo and in vitro was used to study modulation of host liver (HL) metabolism in rats bearing the MAT-LyLu variant of the Dunning prostate tumour. Animals were inoculated either with 10(6) or 10(7) MAT-LyLu cells, or with saline to serve as controls. Carcass weight in tumour-bearing (TB) animals decreased despite similar food and water intake in both groups. Absence of metastatic tumour cells from HL of all TB animals was confirmed by histological examination. Twenty-one days after inoculation, 31P MRS showed a 2.5-fold increase in [Pi]/[ATP] ratios in HL in vivo (P < 0.001) which was confirmed by 31P MRS of liver extracts in vitro (P < 0.005). Phosphodiester to ATP ratios were significantly increased (P < 0.05) in HL in vivo, but absolute PDE levels were similar in both groups. Phosphomonoester to ATP ratios did not change, although absolute phosphomonoester levels in HL were reduced by -41% (not significant). In HL extracts in vitro, sharp reductions in the levels of glucose-6-phosphate (P < 0.05), fructose-6-phosphate (P = 0.05), phosphocholine (P < 0.001), glycerophosphocholine (P < 0.001), and glycerophosphoethanolamine (P < 0.001) were observed. Electron microscopy revealed increased amounts and altered distribution of rough endoplasmic reticulum in HL. These findings show that experimental prostate cancer significantly affects hepatic phosphorylation status, phospholipid metabolism, and gluconeogenesis in the host animal, and demonstrate the value of combined MRS in vivo and in vitro in monitoring HL metabolism in cancer

    Modification of Ammonia Decomposition Activity of Ruthenium Nanoparticles by N-Doping of CNT Supports

    Get PDF
    The use of ammonia as a hydrogen vector has the potential to unlock the hydrogen economy. In this context, this paper presents novel insights into improving the ammonia decomposition activity of ruthenium nanoparticles supported on carbon nanotubes (CNT) by nitrogen doping. Our results can be applied to develop more active systems capable of delivering hydrogen on demand, with a view to move towards the low temperature target of less than 150 °C. Herein we demonstrate that nitrogen doping of the CNT support enhances the activity of ruthenium nanoparticles for the low temperature ammonia decomposition with turnover frequency numbers at 400 °C of 6200 LH2 molRu_{Ru}1^{-1} h1^{-1}, higher than the corresponding value of unmodified CNT supports under the same conditions (4400 LH2_{2} molRu_{Ru}1^{-1} h1^{-1}), despite presenting similar ruthenium particle sizes. However, when the nitrogen doping process is carried out with cetyltrimethylammonium bromide (CTAB) to enhance the dispersion of CNTs, the catalyst becomes virtually inactive despite the small ruthenium particle size, likely due to interference of CTAB, weakening the metal–support interaction. Our results demonstrate that the low temperature ammonia decomposition activity of ruthenium can be enhanced by nitrogen doping of the CNT support due to simultaneously increasing the support’s conductivity and basicity, electronically modifying the ruthenium active sites and promoting a strong metal–support interaction.The authors would like to acknowledge the UK Engineering and Physical Science Research Council (Grant Number EP/L020432/2) for funding, the Department of Chemical Engineering and Biotechnology at the University of Cambridge and SASOL UK Ltd for TEB’s studentship

    Three-spined stickleback armour predicted by body size, minimum winter temperature and pH

    Get PDF
    Similar phenotypes evolve under equivalent environmental conditions through parallel evolution. Because they have repeatedly invaded and adapted to new freshwater environments, the three-spined stickleback (Gasterosteus aculeatus) offers a powerful system for understanding the agents of selection in nature that drive parallel evolution. Here we examine the ecological and environmental variables responsible for morphological variation in three-spined stickleback populations across its European range. We collected fish from 85 populations, encompassing much of the European latitudinal range of the species and including lowland rivers and lakes, coastal lagoons, and moorland ponds. We measured biotic and environmental variables at all sites along with morphological traits for 2,358 individuals. Using an information theory approach, we identified body size, minimum average winter temperature and pH as primary predictors of stickleback armour evolution, challenging current hypotheses for stickleback morphological diversification and demonstrating the fundamental role played by body size and scaling in mediating responses to selection. Stickleback lateral plate phenotype represents a potentially powerful tool for monitoring change in climate variables across the northern temperate region

    One-Way Entangled-Photon Autocompensating Quantum Cryptography

    Full text link
    A new quantum cryptography implementation is presented that combines one-way operation with an autocompensating feature that has hitherto only been available in implementations that require the signal to make a round trip between the users. Using the concept of advanced waves, it is shown that this new implementation is related to the round-trip implementations in the same way that Ekert's two-particle scheme is related to the original one-particle scheme of Bennett and Brassard. The practical advantages and disadvantages of the proposed implementation are discussed in the context of existing schemes.Comment: 5 pages, 1 figure; Minor edits--conclusions unchanged; accepted for publication in Physical Review

    A biphotons double slit experiment

    Full text link
    In this paper we present a double slit experiment where two undistinguishable photons produced by type I PDC are sent each to a well defined slit. Data about the diffraction and interference patterns for coincidences are presented and discussed. An analysis of these data allows a first test of standard quantum mechanics against de Broglie-Bohm theory

    Causality - Complexity - Consistency: Can Space-Time Be Based on Logic and Computation?

    Full text link
    The difficulty of explaining non-local correlations in a fixed causal structure sheds new light on the old debate on whether space and time are to be seen as fundamental. Refraining from assuming space-time as given a priori has a number of consequences. First, the usual definitions of randomness depend on a causal structure and turn meaningless. So motivated, we propose an intrinsic, physically motivated measure for the randomness of a string of bits: its length minus its normalized work value, a quantity we closely relate to its Kolmogorov complexity (the length of the shortest program making a universal Turing machine output this string). We test this alternative concept of randomness for the example of non-local correlations, and we end up with a reasoning that leads to similar conclusions as in, but is conceptually more direct than, the probabilistic view since only the outcomes of measurements that can actually all be carried out together are put into relation to each other. In the same context-free spirit, we connect the logical reversibility of an evolution to the second law of thermodynamics and the arrow of time. Refining this, we end up with a speculation on the emergence of a space-time structure on bit strings in terms of data-compressibility relations. Finally, we show that logical consistency, by which we replace the abandoned causality, it strictly weaker a constraint than the latter in the multi-party case.Comment: 17 pages, 16 figures, small correction

    Reliability of the beamsplitter based Bell-state measurement

    Full text link
    A linear 50/50 beamsplitter, together with a coincidence measurement, has been widely used in quantum optical experiments, such as teleportation, dense coding, etc., for interferometrically distinguishing, measuring, or projecting onto one of the four two-photon polarization Bell-states ψ()>|\psi^{(-)}>. In this paper, we demonstrate that the coincidence measurement at the output of a beamsplitter cannot be used as an absolute identifier of the input state ψ()>|\psi^{(-)}> nor as an indication that the input photons have projected to the ψ()>|\psi^{(-)}> state.Comment: 4 pages, two-colum

    Primakoff effect in eta-photoproduction off protons

    Get PDF
    We analyse data on forward eta-meson photoproduction off a proton target and extract the eta to gamma gamma decay width utilizing the Primakoff effect. The hadronic amplitude that enters into our analysis is strongly constrained because it is fixed from a global fit to available gamma p to p eta data for differential cross sections and polarizations. We compare our results with present information on the two-photon eta-decay from the literature. We provide predictions for future PrimEx experiments at Jefferson Laboratory in order to motivate further studies.Comment: 5 pages, 6 figures, gamma-gamma*-eta form factor included, version to appear in Eur. Phys. J. A

    Entanglement Dynamics in Two-Qubit Open System Interacting with a Squeezed Thermal Bath via Quantum Nondemolition interaction

    Full text link
    We analyze the dynamics of entanglement in a two-qubit system interacting with an initially squeezed thermal environment via a quantum nondemolition system-reservoir interaction, with the system and reservoir assumed to be initially separable. We compare and contrast the decoherence of the two-qubit system in the case where the qubits are mutually close-by (`collective regime') or distant (`localized regime') with respect to the spatial variation of the environment. Sudden death of entanglement (as quantified by concurrence) is shown to occur in the localized case rather than in the collective case, where entanglement tends to `ring down'. A consequence of the QND character of the interaction is that the time-evolved fidelity of a Bell state never falls below 1/21/\sqrt{2}, a fact that is useful for quantum communication applications like a quantum repeater. Using a novel quantification of mixed state entanglement, we show that there are noise regimes where even though entanglement vanishes, the state is still available for applications like NMR quantum computation, because of the presence of a pseudo-pure component.Comment: 17 pages, 9 figures, REVTeX
    corecore