31 research outputs found
An Analogue of Holstein-Primakoff and Dyson Realizations for Lie Superalgebras. The Lie superalgebra sl(1/n)
An analogue of the Holstein-Primakoff and of the Dyson realization for the
Lie superalgebra is written down. The expressions are formally the
same as for the Lie algebra , however in the latter the Bose operators
have to be replaced with Fermi operators.Comment: TeX, 6 page
Transport Properties of Solitons
We calculate in this article the transport coefficients which characterize
the dynamics of solitons in quantum field theory using the methods of
dissipative quantum systems. We show how the damping and diffusion coefficients
of soliton-like excitations can be calculated using the integral functional
formalism. The model obtained in this article has new features which cannot be
obtained in the standard models of dissipation in quantum mechanics.Comment: 16 Pages, RevTeX, Preprint UIU
Polaron Effective Mass, Band Distortion, and Self-Trapping in the Holstein Molecular Crystal Model
We present polaron effective masses and selected polaron band structures of
the Holstein molecular crystal model in 1-D as computed by the Global-Local
variational method over a wide range of parameters. These results are augmented
and supported by leading orders of both weak- and strong-coupling perturbation
theory. The description of the polaron effective mass and polaron band
distortion that emerges from this work is comprehensive, spanning weak,
intermediate, and strong electron-phonon coupling, and non-adiabatic, weakly
adiabatic, and strongly adiabatic regimes. Using the effective mass as the
primary criterion, the self-trapping transition is precisely defined and
located. Using related band-shape criteria at the Brillouin zone edge, the
onset of band narrowing is also precisely defined and located. These two lines
divide the polaron parameter space into three regimes of distinct polaron
structure, essentially constituting a polaron phase diagram. Though the
self-trapping transition is thusly shown to be a broad and smooth phenomenon at
finite parameter values, consistency with notion of self-trapping as a critical
phenomenon in the adiabatic limit is demonstrated. Generalizations to higher
dimensions are considered, and resolutions of apparent conflicts with
well-known expectations of adiabatic theory are suggested.Comment: 28 pages, 15 figure
A liquid helium target system for a measurement of parity violation in neutron spin rotation
A liquid helium target system was designed and built to perform a precision
measurement of the parity-violating neutron spin rotation in helium due to the
nucleon-nucleon weak interaction. The measurement employed a beam of low energy
neutrons that passed through a crossed neutron polarizer--analyzer pair with
the liquid helium target system located between them. Changes between the
target states generated differences in the beam transmission through the
polarizer--analyzer pair. The amount of parity-violating spin rotation was
determined from the measured beam transmission asymmetries. The expected
parity-violating spin rotation of order rad placed severe constraints
on the target design. In particular, isolation of the parity-odd component of
the spin rotation from a much larger background rotation caused by magnetic
fields required that a nonmagnetic cryostat and target system be supported
inside the magnetic shielding, while allowing nonmagnetic motion of liquid
helium between separated target chambers. This paper provides a detailed
description of the design, function, and performance of the liquid helium
target system.Comment: V2: 29 pages, 14 figues, submitted to Nucl. Instrum. Meth. B. Revised
to address reviewer comment
Calculation of excited polaron states in the Holstein model
An exact diagonalization technique is used to investigate the low-lying
excited polaron states in the Holstein model for the infinite one-dimensional
lattice. For moderate values of the adiabatic ratio, a new and comprehensive
picture, involving three excited (coherent) polaron bands below the phonon
threshold, is obtained. The coherent contribution of the excited states to both
the single-electron spectral density and the optical conductivity is evaluated
and, due to the invariance of the Hamiltonian under the space inversion, the
two are shown to contain complementary information about the single-electron
system at zero temperature. The chosen method reveals the connection between
the excited bands and the renormalized local phonon excitations of the
adiabatic theory, as well as the regime of parameters for which the electron
self-energy has notable non-local contributions. Finally, it is shown that the
hybridization of two polaron states allows a simple description of the ground
and first excited state in the crossover regime.Comment: 12 pages, 9 figures, submitted to PR
Finite Cut Approximation for the Form Factor
Assuming the length of the cut to be finite and approximating the
integrated amplitude by a constant, we derive an expression for the form factor which is very close to that given by a simple pole. The
specific predictions of the obtained form factor for the region of small
momentum transfer are discussed along the lines of the Goldberger-Treiman
relation.Comment: 17 pages, Late
Metal-insulator transition in the one-dimensional Holstein model at half filling
We study the one-dimensional Holstein model with spin-1/2 electrons at
half-filling. Ground state properties are calculated for long chains with great
accuracy using the density matrix renormalization group method and extrapolated
to the thermodynamic limit. We show that for small electron-phonon coupling or
large phonon frequency, the insulating Peierls ground state predicted by
mean-field theory is destroyed by quantum lattice fluctuations and that the
system remains in a metallic phase with a non-degenerate ground state and
power-law electronic and phononic correlations. When the electron-phonon
coupling becomes large or the phonon frequency small, the system undergoes a
transition to an insulating Peierls phase with a two-fold degenerate ground
state, long-range charge-density-wave order, a dimerized lattice structure, and
a gap in the electronic excitation spectrum.Comment: 6 pages (LaTex), 10 eps figure
Self-trapping transition for nonlinear impurities embedded in a Cayley tree
The self-trapping transition due to a single and a dimer nonlinear impurity
embedded in a Cayley tree is studied. In particular, the effect of a perfectly
nonlinear Cayley tree is considered. A sharp self-trapping transition is
observed in each case. It is also observed that the transition is much sharper
compared to the case of one-dimensional lattices. For each system, the critical
values of for the self-trapping transitions are found to obey a
power-law behavior as a function of the connectivity of the Cayley tree.Comment: 6 pages, 7 fig
Aspects of radiative K^+_e3 decays
We re-investigate the radiative charged kaon decay K+- --> pi0 e+- nu_e gamma
in chiral perturbation theory, merging the chiral expansion with Low's theorem.
We thoroughly analyze the precision of the predicted branching ratio relative
to the non-radiative decay channel. Structure dependent terms and their impact
on differential decay distributions are investigated in detail, and the
possibility to see effects of the chiral anomaly in this decay channel is
emphasized.Comment: 15 pages, 6 figure
The quark loop calculation of the gamma -> 3 pi form factor
The presently experimentally interesting form factor for the anomalous
process gamma -> pi^+ pi^0 pi^- is calculated as the quark "box"-amplitude
where the intermediate fermion loop is the one of constituent quarks with the
pseudoscalar coupling to pions. This also corresponds to the form factor, in
the lowest order in pion interactions, of the sigma-model and of the chiral
quark model. We give the analytic expression for the form factor in terms of an
expansion in the pion momenta up to the order O(p^8) relative to the soft point
result, and also perform its exact numerical evaluation. We compare our
predictions with those of the vector meson dominance and chiral perturbation
theory, as well as with the scarce data available so far.Comment: revtex, 12 pages including 3 eps figure