10 research outputs found

    Relativistic positioning: four-dimensional numerical approach in Minkowski space-time

    Full text link
    We simulate the satellite constellations of two Global Navigation Satellite Systems: Galileo (EU) and GPS (USA). Satellite motions are described in the Schwarzschild space-time produced by an idealized spherically symmetric non rotating Earth. The trajectories are then circumferences centered at the same point as Earth. Photon motions are described in Minkowski space-time, where there is a well known relation, Coll, Ferrando & Morales-Lladosa (2010), between the emission and inertial coordinates of any event. Here, this relation is implemented in a numerical code, which is tested and applied. The first application is a detailed numerical four-dimensional analysis of the so-called emission coordinate region and co-region. In a second application, a GPS (Galileo) satellite is considered as the receiver and its emission coordinates are given by four Galileo (GPS) satellites. The bifurcation problem (double localization) in the positioning of the receiver satellite is then pointed out and discussed in detail.Comment: 16 pages, 9 figures, published (online) in Astrophys. Space Sc

    GPS observables in general relativity

    Get PDF
    I present a complete set of gauge invariant observables, in the context of general relativity coupled with a minimal amount of realistic matter (four particles). These observables have a straightforward and realistic physical interpretation. In fact, the technology to measure them is realized by the Global Positioning System: they are defined by the physical reference system determined by GPS readings. The components of the metric tensor in this physical reference system are gauge invariant quantities and, remarkably, their evolution equations are local.Comment: 6 pages, 1 figure, references adde

    Evaluation of the BCS Approximation for the Attractive Hubbard Model in One Dimension

    Full text link
    The ground state energy and energy gap to the first excited state are calculated for the attractive Hubbard model in one dimension using both the Bethe Ansatz equations and the variational BCS wavefunction. Comparisons are provided as a function of coupling strength and electron density. While the ground state energies are always in very good agreement, the BCS energy gap is sometimes incorrect by an order of magnitude, particularly at half-filling. Finite size effects are also briefly discussed for cases where an exact solution in the thermodynamic limit is not possible. In general, the BCS result for the energy gap is poor compared to the exact result.Comment: 25 pages, 5 Postscript figure

    Apodization effects in Fourier transform infrared difference spectra

    No full text
    Artifacts may occur in Fourier transform infrared (FTIR) spectra due to the apodization of the interferograms of intense bands. Selected examples of boxcar and triangular apodization effects on difference spectra have been previously reported. This paper reports the first such calculation performed for the Happ-Genzel apodization function, which is often used on modern spectrometers. In order to compare boxcar, triangular, and Happ-Genzel apodization functions we calculate (i) difference-spectrum artifacts, (ii) apparent versus true peak absorbances, and (iii) a measure of integrated artifact area for several true peak intensities of Lorentzian-band shapes. Values of p (ratio of full bandwidth at half height to nominal resolution) are emphasized which commonly occur in the transmission-mode spectroscopy of transparent or translucent solid samples
    corecore