1,467 research outputs found

    Quantization of adiabatic pumped charge in the presence of superconducting lead

    Get PDF
    We investigate the parametric electron pumping of a double barrier structure in the presence of a superconducting lead. The parametric pumping is facilitated by cyclic variation of the barrier heights x1x_1 and x2x_2 of the barriers. In the weak coupling regime, there exists a resonance line in the parameter space (x1,x2)(x_1,x_2) so that the energy of the quasi-bound state is in line with the incoming Fermi energy. Levinson et al found recently that the pumped charge for each pumping cycle is quantized with Q=2eQ=2e for normal structure when the pumping contour encircles the resonance line. In the presence of a superconducting lead, we find that the pumped charge is quantized with the value 2e2e

    Optimal quantum pump in the presence of a superconducting lead

    Get PDF
    We investigate the parametric pumping of a hybrid structure consisting of a normal quantum dot, a normal lead and a superconducting lead. Using the time dependent scattering matrix theory, we have derived a general expression for the pumped electric current and heat current. We have also derived the relationship among the instantaneous pumped heat current, electric current, and shot noise. This gives a lower bound for the pumped heat current in the hybrid system similar to that of the normal case obtained by Avron et al

    Spin Transfer Measurements for (p,n) Reactions at Intermediate Energy

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440

    Weak Interaction Matrix Elements and (p,n) Cross Sections

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Integrated Land Use-Transport Model System with Dynamic Time-Dependent Activity-Travel Microsimulation

    Get PDF
    The development of integrated land use-transport model systems has long been of interest because of the complex interrelationships between land use, transport demand, and network supply. This paper describes the design and prototype implementation of an integrated model system that involves the microsimulation of location choices in the land use domain, activity-travel choices in the travel demand domain, and individual vehicles on networks in the network supply modeling domain. Although many previous applications of integrated transport demand-supply models have relied on a sequential coupling of the models, the system presented in this paper involves a dynamic integration of the activity-travel demand model and the dynamic traffic assignment and simulation model with appropriate feedback to the land use model system. The system has been fully implemented, and initial results of model system runs in a case study test application suggest that the proposed model design provides a robust behavioral framework for simulation of human activity-travel behavior in space, time, and networks. The paper provides a detailed description of the design, together with results from initial test runs

    Quantum Pumping and Quantized Magnetoresistance in a Hall Bar

    Full text link
    We show how a dc current can be generated in a Hall bar without applying a bias voltage. The Hall resistance RHR_H that corresponds to this pumped current is quantized, just as in the usual integer quantum Hall effect (IQHE). In contrast with the IQHE, however, the longitudinal resistance RxxR_{xx} does not vanish on the plateaus, but equals the Hall resistance. We propose an experimental geometry to measure the pumped current and verify the predicted behavior of RHR_H and RxxR_{xx}.Comment: RevTeX, 3 figure

    Specific Heat Study of the Magnetic Superconductor HoNi2B2C

    Full text link
    The complex magnetic transitions and superconductivity of HoNi2B2C were studied via the dependence of the heat capacity on temperature and in-plane field angle. We provide an extended, comprehensive magnetic phase diagram for B // [100] and B // [110] based on the thermodynamic measurements. Three magnetic transitions and the superconducting transition were clearly observed. The 5.2 K transition (T_{N}) shows a hysteresis with temperature, indicating the first order nature of the transition at B=0 T. The 6 K transition (T_{M}), namely the onset of the long-range ordering, displays a dramatic in-plane anisotropy: T_{M} increases with increasing magnetic field for B // [100] while it decreases with increasing field for B // [110]. The anomalous anisotropy in T_{M} indicates that the transition is related to the a-axis spiral structure. The 5.5 K transition (T^{*}) shows similar behavior to the 5.2 K transition, i.e., a small in-plane anisotropy and scaling with Ising model. This last transition is ascribed to the change from a^{*} dominant phase to c^{*} dominant phase.Comment: 9 pages, 11 figure

    Adiabatic quantum pump in the presence of external ac voltages

    Full text link
    We investigate a quantum pump which in addition to its dynamic pump parameters is subject to oscillating external potentials applied to the contacts of the sample. Of interest is the rectification of the ac currents flowing through the mesoscopic scatterer and their interplay with the quantum pump effect. We calculate the adiabatic dc current arising under the simultaneous action of both the quantum pump effect and classical rectification. In addition to two known terms we find a third novel contribution which arises from the interference of the ac currents generated by the external potentials and the ac currents generated by the pump. The interference contribution renormalizes both the quantum pump effect and the ac rectification effect. Analysis of this interference effect requires a calculation of the Floquet scattering matrix beyond the adiabatic approximation based on the frozen scattering matrix alone. The results permit us to find the instantaneous current. In addition to the current generated by the oscillating potentials, and the ac current due to the variation of the charge of the frozen scatterer, there is a third contribution which represents the ac currents generated by an oscillating scatterer. We argue that the resulting pump effect can be viewed as a quantum rectification of the instantaneous ac currents generated by the oscillating scatterer. These instantaneous currents are an intrinsic property of a nonstationary scattering process.Comment: 11 pages, 1 figur

    Exact spectra, spin susceptibilities and order parameter of the quantum Heisenberg antiferromagnet on the triangular lattice

    Full text link
    Exact spectra of periodic samples are computed up to N=36 N=36 . Evidence of an extensive set of low lying levels, lower than the softest magnons, is exhibited. These low lying quantum states are degenerated in the thermodynamic limit; their symmetries and dynamics as well as their finite-size scaling are strong arguments in favor of N\'eel order. It is shown that the N\'eel order parameter agrees with first-order spin-wave calculations. A simple explanation of the low energy dynamics is given as well as the numerical determinations of the energies, order parameter and spin susceptibilities of the studied samples. It is shown how suitable boundary conditions, which do not frustrate N\'eel order, allow the study of samples with N=3p+1 N=3p+1 spins. A thorough study of these situations is done in parallel with the more conventional case N=3p N=3p .Comment: 36 pages, REVTeX 3.0, 13 figures available upon request, LPTL preprin

    Donor states in modulation-doped Si/SiGe heterostructures

    Full text link
    We present a unified approach for calculating the properties of shallow donors inside or outside heterostructure quantum wells. The method allows us to obtain not only the binding energies of all localized states of any symmetry, but also the energy width of the resonant states which may appear when a localized state becomes degenerate with the continuous quantum well subbands. The approach is non-variational, and we are therefore also able to evaluate the wave functions. This is used to calculate the optical absorption spectrum, which is strongly non-isotropic due to the selection rules. The results obtained from calculations for Si/Si1−x_{1-x}Gex_x quantum wells allow us to present the general behavior of the impurity states, as the donor position is varied from the center of the well to deep inside the barrier. The influence on the donor ground state from both the central-cell effect and the strain arising from the lattice mismatch is carefully considered.Comment: 17 pages, 10 figure
    • …
    corecore