1,401 research outputs found
Climatic niche breadth can explain variation in geographical range size of alpine and subalpine plants
Understanding the environmental factors determining the distribution of species with different range sizes can provide valuable insights for evolutionary ecology and conservation biology in the face of expected climate change. However, little is known about what determines the variation in geographical and elevational ranges of alpine and subalpine plant species. Here, we examined the relationship between geographical and elevational range sizes for 80 endemic rhododendron species in China using Spearman’s rank-order correlation. We ran the species distribution model – maximum entropy modelling (MaxEnt) – with 27 environmental variables. The importance of each variable to the model prediction was compared for species groups with different geographical and elevational range sizes. Our results showed that the correlation between geographical and elevational range sizes of rhododendron species was not significant. Climate-related variables were found to be the most important factors in shaping the distributional ranges of alpine and subalpine plant species across China. Species with geographically and elevationally narrow ranges had distinct niche requirements. For geographical ranges, the narrow-ranged species showed less tolerance to niche conditions than the wide-ranged species. For elevational ranges, compared with the wide-ranged species, the narrow-ranged species showed an equivalent niche breadth, but occurred at different niche position along the environmental gradient. Our findings suggest that over large spatial extents the elevational range size can be a complementary trait of alpine and subalpine plant species to geographical range size. Climatic niche breadth, especially the range of seasonal variability, can explain species’ geographical range sizes. Changes in climate may influence the distribution of rhododendrons, with the effects likely being felt most by species with either a narrow geographical or narrow elevational range
Spousal care intensity, socioeconomic status, and depression among the older caregivers in China: a study on 2011–2018 CHARLS panel data
Using the Stress Process Model and data from the 2011-2018 China Health and Retirement Longitudinal Study (CHARLS), this study examined the effect of spousal caregiving intensity on the depression level of older caregivers in China. The moderating role that socioeconomic status plays in the relationship between spouses was explored by constructing Multilevel Growth Models (MGM). The care intensity for a spouse was found to have significantly increased depression levels in older caregivers, while the degree of disability of the spouse being cared for (B=0.200, p<0.001) had a greater effect on depression than the duration of care (B=0.007, p<0.01). There was a threshold effect where the provision of more than 10 hours of care per week for a spouse (B=0.931, p<0.001; B=0.970; p<0.01) or caring for a disabled spouse with limited ADLs (B=0.709, p<0.01; B=1.326; p<0.001; B=1.469, p<0.01) increased depression in older caregivers. There were moderating influences including higher professional prestige before retirement (B=-0.006, p<0.01) and higher annual family income (B=-0.037, p<0.05) that increased depression related to the spouse’s degree of disability. It was considered that active familism measures should be formulated for older spousal caregivers, especially those with lower socioeconomic status
Long-term perturbations due to a disturbing body in elliptic inclined orbit
In the current study, a double-averaged analytical model including the action
of the perturbing body's inclination is developed to study third-body
perturbations. The disturbing function is expanded in the form of Legendre
polynomials truncated up to the second-order term, and then is averaged over
the periods of the spacecraft and the perturbing body. The efficiency of the
double-averaged algorithm is verified with the full elliptic restricted
three-body model. Comparisons with the previous study for a lunar satellite
perturbed by Earth are presented to measure the effect of the perturbing body's
inclination, and illustrate that the lunar obliquity with the value 6.68\degree
is important for the mean motion of a lunar satellite. The application to the
Mars-Sun system is shown to prove the validity of the double-averaged model. It
can be seen that the algorithm is effective to predict the long-term behavior
of a high-altitude Martian spacecraft perturbed by Sun. The double-averaged
model presented in this paper is also applicable to other celestial systems.Comment: 28 pages, 6 figure
Deconstructing 3D growth rates from transmission microscopy images of facetted crystals as captured in situ within supersaturated aqueous solutions
Here, a morphologically based approach is used for the in situ characterization of 3D growth rates of facetted crystals from the solution phase. Crystal images of single crystals of the β-form of L-glutamic acid are captured in situ during their growth at a relative supersaturation of 1.05 using transmission optical microscopy. The crystal growth rates estimated for both the {101} capping and {021} prismatic faces through image processing are consistent with those determined using reflection light mode [Jiang, Ma, Hazlehurst, Ilett, Jackson, Hogg & Roberts (2024[Jiang, C., Ma, C. Y., Hazlehurst, T. A., Ilett, T. P., Jackson, A. S. M., Hogg, D. C. & Roberts, K. J. (2024). Cryst. Growth Des. 24, 3277-3288.]). Cryst. Growth Des. 24, 3277–3288]. The growth rate in the {010} face is, for the first time, estimated from the shadow widths of the {021} prismatic faces and found to be typically about half that of the {021} prismatic faces. Analysis of the 3D shape during growth reveals that the initial needle-like crystal morphology develops during the growth process to become more tabular, associated with the Zingg factor evolving from 2.9 to 1.7 (>1). The change in relative solution supersaturation during the growth process is estimated from calculations of the crystal volume, offering an alternative approach to determine this dynamically from visual observations
Optical absorption in boron clusters B and B : A first principles configuration interaction approach
The linear optical absorption spectra in neutral boron cluster B and
cationic B are calculated using a first principles correlated
electron approach. The geometries of several low-lying isomers of these
clusters were optimized at the coupled-cluster singles doubles (CCSD) level of
theory. With these optimized ground-state geometries, excited states of
different isomers were computed using the singles configuration-interaction
(SCI) approach. The many body wavefunctions of various excited states have been
analysed and the nature of optical excitation involved are found to be of
collective, plasmonic type.Comment: 22 pages, 38 figures. An invited article submitted to European
Physical Journal D. This work was presented in the International Symposium on
Small Particles and Inorganic Clusters - XVI, held in Leuven, Belgiu
Early Stages of Homopolymer Collapse
Interest in the protein folding problem has motivated a wide range of
theoretical and experimental studies of the kinetics of the collapse of
flexible homopolymers. In this Paper a phenomenological model is proposed for
the kinetics of the early stages of homopolymer collapse following a quench
from temperatures above to below the theta temperature. In the first stage,
nascent droplets of the dense phase are formed, with little effect on the
configurations of the bridges that join them. The droplets then grow by
accreting monomers from the bridges, thus causing the bridges to stretch.
During these two stages the overall dimensions of the chain decrease only
weakly. Further growth of the droplets is accomplished by the shortening of the
bridges, which causes the shrinking of the overall dimensions of the chain. The
characteristic times of the three stages respectively scale as the zeroth, 1/5
and 6/5 power of the the degree of polymerization of the chain.Comment: 11 pages, 3 figure
The newly observed open-charm states in quark model
Comparing the measured properties of the newly observed open-charm states
D(2550), D(2600), D(2750), D(2760), D_{s1}(2710), D_{sJ}(2860), and
D_{sJ}(3040) with our predicted spectroscopy and strong decays in a constituent
quark model, we find that: (1) the D(2\,^1S_0) assignment to D(2550) remains
open for its too broad width determined by experiment; (2) the D(2600) and
can be identified as the 2\,^3S_1-1\,^3D_1 mixtures; (3) if
the D(2760) and D(2750) are indeed the same resonance, they would be the
D(1\,^3D_3); otherwise, they could be assigned as the D(1\,^3D_3) and
, respectively; (4) the could be either the
's partner or the D_s(1\,^3D_3); and (5) both the
and interpretations for the seem likely. The
and radiative decays of these sates are also studied. Further
experimental efforts are needed to test the present quarkonium assignments for
these new open-charm states.Comment: 26 pages,7 figures, journal versio
Backward pion-nucleon scattering
A global analysis of the world data on differential cross sections and
polarization asymmetries of backward pion-nucleon scattering for invariant
collision energies above 3 GeV is performed in a Regge model. Including the
, , and trajectories, we
reproduce both angular distributions and polarization data for small values of
the Mandelstam variable , in contrast to previous analyses. The model
amplitude is used to obtain evidence for baryon resonances with mass below 3
GeV. Our analysis suggests a resonance with a mass of 2.83 GeV as
member of the trajectory from the corresponding Chew-Frautschi
plot.Comment: 12 pages, 16 figure
Ferritin is secreted via 2 distinct nonclassical vesicular pathways
Ferritin turnover plays a major role in tissue iron homeostasis, and ferritin malfunction is associated with impaired iron homeostasis and neurodegenerative diseases. In most eukaryotes, ferritin is considered an intracellular protein that stores iron in a nontoxic and bioavailable form. In insects, ferritin is a classically secreted protein and plays a major role in systemic iron distribution. Mammalian ferritin lacks the signal peptide for classical endoplasmic reticulum–Golgi secretion but is found in serum and is secreted via a nonclassical lysosomal secretion pathway. This study applied bioinformatics and biochemical tools, alongside a protein trafficking mouse models, to characterize the mechanisms of ferritin secretion. Ferritin trafficking via the classical secretion pathway was ruled out, and a 2:1 distribution of intracellular ferritin between membrane-bound compartments and the cytosol was observed, suggesting a role for ferritin in the vesicular compartments of the cell. Focusing on nonclassical secretion, we analyzed mouse models of impaired endolysosomal trafficking and found that ferritin secretion was decreased by a BLOC-1 mutation but increased by BLOC-2, BLOC-3, and Rab27A mutations of the cellular trafficking machinery, suggesting multiple export routes. A 13-amino-acid motif unique to ferritins that lack the secretion signal peptide was identified on the BC-loop of both subunits and plays a role in the regulation of ferritin secretion. Finally, we provide evidence that secretion of iron-rich ferritin was mediated via the multivesicular body–exosome pathway. These results enhance our understanding of the mechanism of ferritin secretion, which is an important piece in the puzzle of tissue iron homeostasis
- …