62 research outputs found

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    CO 2 activation on single crystal based ceria and magnesia/ceria model catalysts

    No full text
    Novel multifunctional ceria based materials may show an improved performance in catalytic processes involving CO2 activation and reforming of hydrocarbons. Towards a more detailed understanding of the underlying surface chemistry, we have investigated CO2 activation on single crystal based ceria and magnesia/ceria model catalysts. All model systems are prepared starting from well-ordered and fully stoichiometric CeO2(111) films on a Cu(111) substrate. Samples with different structure, oxidation state and compositions are generated, including CeO2-x/Cu(111) (reduced), MgO/CeO2-x/Cu(111) (reduced), mixed MgO-CeO2/Cu(111) (stoichiometric), and mixed MgO-CeO2-x/Cu(111) (reduced). The morphology of the model surfaces is characterized by means of scanning tunneling microscopy (STM), whereas the electronic structure and reactivity is probed by X-ray photoelectron spectroscopy (XPS). The experimental approach allows us to compare the reactivity of samples containing different types of Ce3+, Ce4+, and Mg2+ ions towards CO2 at a sample temperature of 300 K. Briefly, we detect the formation of two CO2-derived species, namely carbonate (CO32-) and carboxylate (CO2-) groups, on the surfaces of all investigated samples after exposure to CO2 at 300 K. In parallel to formation of the carbonate species, slow partial reoxidation of reduced CeO2-x/Cu(111) occurs at large doses of CO2. The reoxidation of the reduced ceria is largely suppressed on MgO-containing samples. The tendency for reoxidation of Ce3+ to Ce4+ by CO2 decreases with increasing degree of intermixing between MgO and CeO2-x. Additionally, we have studied the stability of the formed carbonate species as a function of annealing temperature

    The disparity of priapulid, archaeopriapulid and palaeoscolecid worms in the light of new data

    No full text
    Priapulids and their extinct relatives, the archaeopriapulids and palaeoscolecids, are vermiform, carnivorous ecdysozoans with an armoured, extensible proboscis. These worms were an important component of marine communities during the Palaeozoic, but were especially abundant and diverse in the Cambrian. Today, they comprise just seven genera in four families. Priapulids were among the first groups used to test hypotheses concerning the morphological disparity of Cambrian fossils relative to the extant fauna. A previous study sampled at the generic level, concluding that Cambrian genera embodied marginally less morphological diversity than their extant counterparts. Here, we sample predominantly at the species level and include numerous fossils and some extant forms described in the last fifteen years. Empirical morphospaces for priapulids, archaeopriapulids and palaeoscolecids are relatively insensitive to changes in the taxon or character sample: their overall form has altered little, despite the markedly improved sampling. Cambrian and post-Cambrian genera occupy adjacent rather than broadly overlapping regions of these spaces, and Cambrian species still show lower morphological disparity than their post-Cambrian counterparts. Crucially, the significance of this difference has increased with improved taxon sampling over research time. In contrast with empirical morphospaces, the phylogeny of priapulids, archaeopriapulids and palaeoscolecids derived from morphological characters is extremely sensitive to details of taxon sampling and the manner in which characters are weighted. However, the extant Priapulidae and Halicryptidae invariably resolve as sister families, with this entire clade subsequently being sister group to the Maccabeidae. In our most inclusive trees, the extant Tubiluchidae are separated from these other living taxa by a number of small, intervening fossil clades
    • 

    corecore