24 research outputs found

    Ethnic differences in frequencies of gene polymorphisms in the MYCL1 region and modulation of lung cancer patients' survival

    Get PDF
    Linkage disequilibrium (LD) analysis to refine a region associated with lung cancer progression on chromosome 1p34 identified a 106 kb LD block that includes MYCL1, TRIT1 (tRNA isopentenyltransferase 1) and MFSD2 (major facilitator superfamily domain-containing 2). Case-only association study on SNPs mapping in TRIT1 and MFSD2 indicated that the rare Leu allele (frequency: 0.04) of the TRIT1 Phe202Leu variation predicts short survival as compared to the common Phe/Phe genotype (hazard ratio (HR)=1.7; 95% CI, 1.03-2.86; P=0.039) in 335 Italian lung adenocarcinoma samples. A replication study in an independent population of 246 Norwegian lung cancer patients confirmed the significant association of the Phe202Leu polymorphism with patients' survival, but the rare allele was associated with better survival rate (HR=0.5; 95% CI, 0.26-0.91; P=0.023). The rare allele of TRIT1 Phe202Leu SNP was approximately seven-fold more frequent in Asian than in Caucasian subjects and three additional SNPs in the TRIT1 and MFSD2 genes showed ethnic differences in allelic frequencies. These results suggest that polymorphisms in the MYCL1 LD region affect lung cancer survival but that the functional element(s) may show population-specific patterns

    Genetic susceptibility variants for lung cancer: Replication study and assessment as expression quantitative trait loci

    Get PDF
    Many single nucleotide polymorphisms (SNPs) have been associated with lung cancer but lack confirmation and functional characterization. We retested the association of 56 candidate SNPs with lung adenocarcinoma risk and overall survival in a cohort of 823 Italian patients and 779 healthy controls, and assessed their function as expression quantitative trait loci (eQTLs). In the replication study, eight SNPs (rs401681, rs3019885, rs732765, rs2568494, rs16969968, rs6495309, rs11634351, and rs4105144) associated with lung adenocarcinoma risk and three (rs9557635, rs4105144, and rs735482) associated with survival. Five of these SNPs acted as cis-eQTLs, being associated with the transcription of IREB2 (rs2568494, rs16969968, rs11634351, rs6495309), PSMA4 (rs6495309) and ERCC1 (rs735482), out of 10,821 genes analyzed in lung. For these three genes, we obtained experimental evidence of differential allelic expression in lung tissue, pointing to the existence of in-cis genomic variants that regulate their transcription. These results suggest that these SNPs exert their effects on cancer risk/outcome through the modulation of mRNA levels of their target genes

    Read-through transcripts in normal human lung parenchyma are down-regulated in lung adenocarcinoma

    Get PDF
    Read-through transcripts result from the continuous transcription of adjacent, similarly oriented genes, with the splicing out of the intergenic region. They have been found in several neoplastic and normal tissues, but their pathophysiological significance is unclear. We used high-throughput sequencing of cDNA fragments (RNA-Seq) to identify read-through transcripts in the non-involved lung tissue of 64 surgically treated lung adenocarcinoma patients. A total of 52 distinct read-through species was identified, with 24 patients having at least one read-through event, up to a maximum of 17 such transcripts in one patient. Sanger sequencing validated 28 of these transcripts and identified an additional 15, for a total of 43 distinct read-through events involving 35 gene pairs. Expression levels of 10 validated read-through transcripts were measured by quantitative PCR in pairs of matched non-involved lung tissue and lung adenocarcinoma tissue from 45 patients. Higher expression levels were observed in normal lung tissue than in the tumor counterpart, with median relative quantification ratios between normal and tumor varying from 1.90 to 7.78; the difference was statistically significant (P < 0.001, Wilcoxon's signed-rank test for paired samples) for eight transcripts: ELAVL1-TIMM44, FAM162B-ZUFSP, IFNAR2-IL10RB, INMT-FAM188B, KIAA1841-C2orf74, NFATC3-PLA2G15, SIRPB1-SIRPD, and SHANK3-ACR. This report documents the presence of read-through transcripts in apparently normal lung tissue, with inter-individual differences in patterns and abundance. It also shows their down-regulation in tumors, suggesting that these chimeric transcripts may function as tumor suppressors in lung tissue

    Identification and functional characterization of the candidate tumor suppressor gene TRIT1 in human lung cancer

    No full text
    tRNA-isopentenyltransferase (tRNA-IPT) catalyses the addition of N6-isopentenyladenosine (i6A) on residue 37 of tRNA molecules that bind codons starting with uridine. Post-transcriptional modifications of tRNA molecules have been demonstrated to be essential in maintaining the correct reading frame of the translational machinery, thus improving fidelity and efficiency of protein synthesis. We show here that the human tRNA-isopentenyltransferase (TRIT1) gene encodes a complex pattern of mRNA variants through alternative splicing in both normal and tumor lung tissue and that the nonsense suppressor activity of tRNA-IPT is maintained only in the full-length mRNA isoform, as revealed by gene complementation in yeast. Expression of the full-length transcript was down-regulated 6-14-fold in lung adenocarcinomas as compared to normal lung tissue. A549 lung cancer cells transfected to express the functional TRIT1 gene formed significantly smaller colonies with reduced scattering on the edges and had only limited ability to induce tumors in nude mice. Our findings raise the possibility of TRIT1 as a candidate lung tumor suppressor

    Differentiation dependent expression in muscle cells of ZT3, a novel zinc finger factor differentially expressed in embryonic and adult tissues.

    No full text
    ZT3, isolated from a murine muscle cell cDNA library by a low-stringency hybridization, encodes a zinc finger domain containing factor with a transcript of 5.0 kb. A 3′ 2.5 kb partial nucleotide sequence contains an ORF of 1.5 kb where 17 canonical C2H2 zinc finger domains organized in tandem were identified. It maps on mouse chromosome 11, close to two mutations which affect skeletal formation. ZT3 expression depends upon differentiation of myogenic cells in culture, since it is upregulated with myogenin and inhibited in scr-transfected C2C12 cells. ZT3 is not expressed in NIH3T3 or C3H10T1/2 fibroblasts, but is induced when fibroblasts are myogenically converted by transfection with the muscle regulatory genes (MRFs). Its expression is also upregulated in the rhabdomyosarcoma cell line RD induced to myogenic differentiation by TPA treatment. In postimplantation embryos, ZT3 is diffusely expressed but higher expression is detectable in the neural tube and encephalic vesicles, in the somites and, at a high level, in the limb buds as they form. During further development ZT3 is expressed in many tissues of neuroectodermal and mesodermal origin, but its expression decreases during fetal development and in the adult it is restricted to skeletal and cardiac muscle and to spleen. This pattern of expression suggests a possible role played by ZT3 in differentiating skeletal muscle. Its expression in other tissues is compatible with the suggestion that members of this class of DNA-binding factors play different roles during post-implantation development and in the adult life

    Isolation and characterization of the murine zinc finger coding gene, ZT2: expression in normal and transformed myogenic cells.

    No full text
    In the context of a project aimed at the identification of zinc finger proteins involved in skeletal muscle histogenesis and differentiation, we isolated a murine gene, named ZT2. The 2.44 kb partial cDNA clone corresponds to the 3Âľ region of the gene, and contains a 0.54 kb open reading frame encoding four C2H2-like zinc finger domains, organized in tandem. This cDNA hybridizes with multiple transcripts (2, 4.5 and 7 kb), whose expression levels vary in different tissues and at different developmental stages in the same tissue. At least in skeletal muscle we observed differences in the polyadenylation state of the transcripts at different stages of development. Moreover, ZT2 expression is correlated with cell proliferation and transformation. Sequence analysis and genetic mapping indicate that ZT2 is the homologue of ZNF125, one of the linked zinc finger encoding genes localized on human Chr 11q23. In humans, a high frequency of tumor-associated translocations is found in this chromosome region. As expected, ZT2 maps to the corresponding region on chromosome 9 in the mouse

    Multiple isoforms and differential allelic expression of CHRNA5 in lung tissue and lung adenocarcinoma

    No full text
    CHRNA5 gene expression variation may play a role in individual susceptibility to lung cancer. Analysis of CHRNA5 transcripts expressed in normal lung tissue detected the full-length transcript (isoform-1) and four splicing transcripts (isoform-2 to isoform- 5), derived from the recognition of other splice sites in exon 5. Isoforms-2, -3 and -4 were found by protein modeling to form a completely folded, potentially functional extracellular domain and were observed at the protein level, whereas isoform-5 lacked a consistent part of the distorted \ue6 sandwich and was not seen at the protein level. Only isoform-1 appeared to encode a complete, functional subunit able to fulfill the ion channel function. We previously reported that CHRNA5 expression is associated with genetic polymorphisms at this locus and that three haplotypes in its promoter region show functional regulation in vitro. Analysis of differential allelic expression (DAE) of three single nucleotide polymorphisms (rs503464, rs55853698 and rs55781567) tagging the expression haplotypes of the CHRNA5 promoter indicated statistically significant DAE at rs55853698 and rs55781567, in both normal lung and lung adenocarcinoma. Overall, our findings provide evidence for the presence of multiple CHRNA5 messenger RNA (mRNA) isoforms that may modulate the multimeric nicotine receptor and cis-regulatory variations in the CHRNA5 locus that act in vivo in the control of CHRNA5 mRNA expression, in normal lung tissue and in lung adenocarcinoma.CHRNA5 gene expression variation may play a role in individual susceptibility to lung cancer. Analysis of CHRNA5 transcripts expressed in normal lung tissue detected the full-length transcript (isoform-1) and four splicing transcripts (isoform-2 to isoform- 5), derived from the recognition of other splice sites in exon 5. Isoforms-2, -3 and -4 were found by protein modeling to form a completely folded, potentially functional extracellular domain and were observed at the protein level, whereas isoform-5 lacked a consistent part of the distorted \ue6 sandwich and was not seen at the protein level. Only isoform-1 appeared to encode a complete, functional subunit able to fulfill the ion channel function. We previously reported that CHRNA5 expression is associated with genetic polymorphisms at this locus and that three haplotypes in its promoter region show functional regulation in vitro. Analysis of differential allelic expression (DAE) of three single nucleotide polymorphisms (rs503464, rs55853698 and rs55781567) tagging the expression haplotypes of the CHRNA5 promoter indicated statistically significant DAE at rs55853698 and rs55781567, in both normal lung and lung adenocarcinoma. Overall, our findings provide evidence for the presence of multiple CHRNA5 messenger RNA (mRNA) isoforms that may modulate the multimeric nicotine receptor and cis-regulatory variations in the CHRNA5 locus that act in vivo in the control of CHRNA5 mRNA expression, in normal lung tissue and in lung adenocarcinoma. \ua9 The Author 2013. Published by Oxford University Press. All rights reserved

    Transcriptome of normal lung distinguishes mouse lines with different susceptibility to inflammation and to lung tumorigenesis

    No full text
    AIRmax and AIRmin mouse lines show a differential lung inflammatory response and differential lung tumor susceptibility after urethane treatment. The transcript profile of 24,000 known genes was analyzed in normal lung tissue of untreated and urethane-treated AIRmax and AIRmin mice. In lungs of untreated mice, inflammation-associated genes involved in pathways such as \u201cleukocyte transendothelial migration\u201d, \u201ccell adhesion\u201d and \u201ctight junctions\u201d were differentially expressed. Moreover, gene expression levels differed significantly in urethane-treated mice; in AIRmin mice, modulation of expression of genes involved in pathways associated with inflammatory response paralleled the previously observed persistent infiltration of inflammatory cells in the lung of these mice
    corecore