3,663 research outputs found
Recommended from our members
DQO Summary Report for 324 and 327 Building Hot Cells D4 Project Waste Characterization
This data quality objective (DQO) summary report provides the results of the DQO process conducted for waste characterization activities for the 324 and 327 Building hot cells decommission, deactivate, decontaminate, and demolish activities. This DQO summary report addresses the systems and processes related to the hot cells, air locks, vaults, tanks, piping, basins, air plenums, air ducts, filters, an adjacent elements that have high dose rates, high contamination levels, and/or suspect transuranic waste, which will require nonstandard D4 techniques
Recommended from our members
Redox-electrolytes for non-flow electrochemical energy storage: A critical review and best practice
Over recent decades, a new type of electric energy storage system has emerged with the principle that the electric charge can be stored not only at the interface between the electrode and the electrolyte but also in the bulk electrolyte by redox activities of the electrolyte itself. Those redox electrolytes are promising for non-flow hybrid energy storage systems, or redox electrolyte-aided hybrid energy storage (REHES) systems; particularly, when they are combined with highly porous carbon electrodes. In this review paper, critical design considerations for the REHES systems are discussed as well as the effective electrochemical characterization techniques. Appropriate evaluation of the electrochemical performance is discussed thoroughly, including advanced analytical techniques for the determination of the electrochemical stability of the redox electrolytes and self-discharge rate. Additionally, critical summary tables for the recent progress on REHES systems are provided. Furthermore, the unique synergistic combination of porous carbon materials and redox electrolytes is introduced in terms of the diffusion, adsorption, and electrochemical kinetics modulating energy storage in REHES systems. © 2018 The Author(s
Some Properties of Noether Charge and a Proposal for Dynamical Black Hole Entropy
We consider a general, classical theory of gravity with arbitrary matter
fields in dimensions, arising from a diffeomorphism invariant Lagrangian,
\bL. We first show that \bL always can be written in a ``manifestly
covariant" form. We then show that the symplectic potential current
-form, , and the symplectic current -form, \om, for the
theory always can be globally defined in a covariant manner. Associated with
any infinitesimal diffeomorphism is a Noether current -form, \bJ, and
corresponding Noether charge -form, \bQ. We derive a general
``decomposition formula" for \bQ. Using this formula for the Noether charge,
we prove that the first law of black hole mechanics holds for arbitrary
perturbations of a stationary black hole. (For higher derivative theories,
previous arguments had established this law only for stationary perturbations.)
Finally, we propose a local, geometrical prescription for the entropy,
, of a dynamical black hole. This prescription agrees with the Noether
charge formula for stationary black holes and their perturbations, and is
independent of all ambiguities associated with the choices of \bL, , and
\bQ. However, the issue of whether this dynamical entropy in general obeys a
``second law" of black hole mechanics remains open. In an appendix, we apply
some of our results to theories with a nondynamical metric and also briefly
develop the theory of stress-energy pseudotensors.Comment: 30 pages, LaTe
Observational constraints on the neutron star mass distribution
Radio observations of neutron star binary pulsar systems have constrained
strongly the masses of eight neutron stars. Assuming neutron star masses are
uniformly distributed between lower and upper bounds and , the
observations determine with 95\% confidence that and . These limits give observational
support to neutron star formation scenarios that suggest that masses should
fall predominantly in the range , and will also be
important in the interpretation of binary inspiral observations by the Laser
Interferometer Gravitational-wave Observatory.Comment: Postscript, 4 pages, NU-GR-
IMPACT: Impersonation attack detection via edge computing using deep autoencoder and feature abstraction
An ever-increasing number of computing devices interconnected through wireless networks encapsulated in the cyber-physical-social systems and a significant amount of sensitive network data transmitted among them have raised security and privacy concerns. Intrusion detection system (IDS) is known as an effective defence mechanism and most recently machine learning (ML) methods are used for its development. However, Internet of Things (IoT) devices often have limited computational resources such as limited energy source, computational power and memory, thus, traditional ML-based IDS that require extensive computational resources are not suitable for running on such devices. This study thus is to design and develop a lightweight ML-based IDS tailored for the resource-constrained devices. Specifically, the study proposes a lightweight ML-based IDS model namely IMPACT (IMPersonation Attack deteCTion using deep auto-encoder and feature abstraction). This is based on deep feature learning with gradient-based linear Support Vector Machine (SVM) to deploy and run on resource-constrained devices by reducing the number of features through feature extraction and selection using a stacked autoencoder (SAE), mutual information (MI) and C4.8 wrapper. The IMPACT is trained on Aegean Wi-Fi Intrusion Dataset (AWID) to detect impersonation attack. Numerical results show that the proposed IMPACT achieved 98.22% accuracy with 97.64% detection rate and 1.20% false alarm rate and outperformed existing state-of-the-art benchmark models. Another key contribution of this study is the investigation of the features in AWID dataset for its usability for further development of IDS
Recommended from our members
Low-level liquid waste decontamination by ion exchange
Improved processes are being developed to treat contaminated liquid wastes that have been and continue to be generated at Oak Ridge National Laboratory. Both inorganic and organic ion-exchange methods have given promising results. Nickel and cobalt hexacyanoferrate(2) compounds are extremely selective for cesium removal, with distribution coefficients in excess of 10{sup 6} and remarkable insensitivity to competition from sodium and potassium. They tend to lose effectiveness at pH > {approximately}11, but some formulations are useful for limited periods of time up to pH {approximately}13. Sodium titanate is selective for strontium removal at high pH. The separations are so efficient that simple batch processes can yield large decontamination factors while generating small volumes of solid waste. A resorcinol-based resin developed at the Savannah River Site gave superior cesium removal, compared with other organic ion exchangers; the distribution coefficient was limited primarily by competition from potassium and was nearly independent of sodium. The optimum pH was {approximately}12.5. It was much less effective for strontium removal, which was limited by competition from sodium. 8 refs., 6 figs., 9 tabs
Density-functional embedding using a plane-wave basis
The constrained electron density method of embedding a Kohn-Sham system in a
substrate system (first described by P. Cortona, Phys. Rev. B {\bf 44}, 8454
(1991) and T.A. Wesolowski and A. Warshel, J. Phys. Chem {\bf 97}, 8050 (1993))
is applied with a plane-wave basis and both local and non-local
pseudopotentials. This method divides the electron density of the system into
substrate and embedded electron densities, the sum of which is the electron
density of the system of interest. Coupling between the substrate and embedded
systems is achieved via approximate kinetic energy functionals. Bulk aluminium
is examined as a test case for which there is a strong interaction between the
substrate and embedded systems. A number of approximations to the
kinetic-energy functional, both semi-local and non-local, are investigated. It
is found that Kohn-Sham results can be well reproduced using a non-local
kinetic energy functional, with the total energy accurate to better than 0.1 eV
per atom and good agreement between the electron densities.Comment: 11 pages, 4 figure
On the positive mass theorem for manifolds with corners
We study the positive mass theorem for certain non-smooth metrics following
P. Miao's work. Our approach is to smooth the metric using the Ricci flow. As
well as improving some previous results on the behaviour of the ADM mass under
the Ricci flow, we extend the analysis of the zero mass case to higher
dimensions.Comment: 21 pages, incorporated referee's comment
WISP genes are members of the connective tissue growth factor family that are up-regulated in Wnt-1-transformed cells and aberrantly expressed in human colon tumors
Wnt family members are critical to many developmental processes, and components of the Wnt signaling pathway have been linked to tumorigenesis in familial and sporadic colon carcinomas. Here we report the identification of two genes, WISP-1 and WISP-2, that are up-regulated in the mouse mammary epithelial cell line C57MG transformed by Wnt-1, but not by Wnt-4. Together with a third related gene, WISP-3, these proteins define a subfamily of the connective tissue growth factor family. Two distinct systems demonstrated WISP induction to be associated with the expression of Wnt-1. These included (i) C57MG cells infected with a Wnt-1 retroviral vector or expressing Wnt-1 under the control of a tetracyline repressible promoter, and (ii) Wnt-1 transgenic mice. The WISP-1 gene was localized to human chromosome 8q24.1-8q24.3. WISP-1 genomic DNA was amplified in colon cancer cell lines and in human colon tumors and its RNA overexpressed (2- to >30-fold) in 84% of the tumors examined compared with patient-matched normal mucosa. WISP-3 mapped to chromosome 6q22-6q23 and also was overexpressed (4- to >40-fold) in 63% of the colon tumors analyzed. In contrast, WISP-2 mapped to human chromosome 20q12-20q13 and its DNA was amplified, but RNA expression was reduced (2- to >30-fold) in 79% of the tumors. These results suggest that the WISP genes may be downstream of Wnt-1 signaling and that aberrant levels of WISP expression in colon cancer may play a role in colon tumorigenesis
Conductance fluctuations in a quantum dot under almost periodic ac pumping
It is shown that the variance of the linear dc conductance fluctuations in an
open quantum dot under a high-frequency ac pumping depends significantly on the
spectral content of the ac field. For a sufficiently strong ac field
, where is the dephasing rate induced by
ac noise and is the electron escape rate, the dc conductance
fluctuations are much stronger for the harmonic pumping than in the case of the
noise ac field of the same intensity. The reduction factor in a static
magnetic field takes the universal value of 2 only for the white--noise
pumping. For the strictly harmonic pumping of
sufficiently large intensity the variance is almost insensitive to the static
magnetic field . For the quasi-periodic ac
field of the form with
and we predict the novel
effect of enchancement of conductance fluctuations at commensurate frequencies
.Comment: 4 pages RevTex, 4 eps figures; the final version to appear in
Phys.Rev.
- …