36,845 research outputs found

    Simulations of thermally broadened HI Lya absorption arising in the warm-hot intergalactic medium

    Full text link
    Recent far-ultraviolet (FUV) absorption line measurements of low-redshift quasars have unveiled a population of intervening broad HI Lya absorbers (BLAs) with large Doppler parameters (b> 40 km/s). If the large width of these lines is dominated by thermal line broadening, the BLAs may trace highly-ionized gas in the warm-hot intergalactic medium (WHIM) in the temperature range T ~ 10^5-10^6 K, a gas phase that is expected to contain a large fraction of the baryons at low redshift. In this paper we use a hydrodynamical simulation to study frequency, distribution, physical conditions, and baryon content of the BLAs at z=0. From our simulated spectra we derive a number of BLAs per unit redshift of (dN/dz)_BLA ~ 38 for HI absorbers with log (N(cm^-2)/b(km/s))>10.7, b>40 km/s, and log N(HII)<20.5. The baryon content of these systems is Omega_b(BLA)=0.0121/h_65, which represents ~25 percent of the total baryon budget in our simulation. Our results thus support the idea that BLAs represent a significant baryon reservoir at low redshift. BLAs predominantly trace shock-heated collisionally ionized WHIM gas at temperatures log T~4.4-6.2. About 27 percent of the BLAs in our simulation originate in the photoionized Lya forest (log T<4.3) and their large line widths are determined by non-thermal broadening effects such as unresolved velocity structure and macroscopic turbulence. Our simulation implies that for a large-enough sample of BLAs in FUV spectra it is possible to obtain a reasonable approximation of the baryon content of these systems solely from the measured HI column densities and b values.Comment: 11 pages, 8 figures; minor modifications; accepted for publication in A&

    The Multiphase Intracluster Medium in Galaxy Groups Probed by the Lyman Alpha Forest

    Full text link
    The case is made that the intracluster medium (ICM) in spiral-rich galaxy groups today probably has undergone much slower evolution than that in elliptical-rich groups and clusters. The environments of proto-clusters and proto-groups at z > 2 are likely similar to spiral-rich group environments at lower redshift. Therefore, like the ICM in spiral-rich groups today, the ICM in proto-groups and proto-clusters at z > 2 is predicted to be significantly multiphased. The QSO Lyman alpha forest in the vicinity of galaxies is an effective probe of the ICM at a wide range of redshift. Two recent observations of Lyman alpha absorption around galaxies by Adelberger et al. and by Pascarelle et al are reconciled, and it is shown that observations support the multiphase ICM scenario. Galaxy redshifts must be very accurate for such studies to succeed. This scenario can also explain the lower metallicity and lower hot gas fraction in groups.Comment: 4 pages, 1 figure, replaced with the version after proo

    Hydrogen Clouds before Reionization: a Lognormal Model Approach

    Full text link
    We study the baryonic gas clouds (the IGM) in the universe before the reionization with the lognormal model which is shown to be dynamcially legitimate in describing the fluctuation evolution in quasilinear as well as nonlinear regimes in recent years. The probability distribution function of the mass field in the LN model is long tailed and so plays an important role in rare events, such as the formation of the first generation of baryonic objects. We calculate density and velocity distributions of the IGM at very high spatial resolutions, and simulate the distributions at resolution of 0.15 kpc from z=7 to 15 in the LCDM cosmological model. We performed a statistics of the hydrogen clouds including column densities, clumping factors, sizes, masses, and spatial number density etc. One of our goals is to identify which hydrogen clouds are going to collapse. By inspecting the mass density profile and the velocity profile of clouds, we found that the velocity outflow significantly postpones the collapsing process in less massive clouds, in spite of their masses are larger than the Jeans mass. Consequently, only massive (> 10^5 M_sun) clouds can form objects at higher redshift, and less massive (10^4-10^5) collapsed objects are formed later. For example, although the mass fraction in clouds with sizes larger than the Jeans length is already larger than 1 at z=15, there is only a tiny fraction of mass (10^{-8}) in the clouds which are collapsed at that time. If all the ionizing photons, and the 10^{-2} metallicity observed at low redshift are produced by the first 1% mass of collapsed baryonic clouds, the majority of those first generation objects would not happen until z=10.Comment: Paper in AAStex, 12 figure

    Global exponential stability of classical solutions to the hydrodynamic model for semiconductors

    Full text link
    In this paper, the global well-posedness and stability of classical solutions to the multidimensional hydrodynamic model for semiconductors on the framework of Besov space are considered. We weaken the regularity requirement of the initial data, and improve some known results in Sobolev space. The local existence of classical solutions to the Cauchy problem is obtained by the regularized means and compactness argument. Using the high- and low- frequency decomposition method, we prove the global exponential stability of classical solutions (close to equilibrium). Furthermore, it is also shown that the vorticity decays to zero exponentially in the 2D and 3D space. The main analytic tools are the Littlewood-Paley decomposition and Bony's para-product formula.Comment: 18 page
    corecore