18,797 research outputs found

    Albedo and flux extinction coefficient of impure snow for diffuse shortwave radiation

    Get PDF
    Impurities enter a snowpack as a result of fallout of scavenging by falling snow crystals. Albedo and flux extinction coefficient of soot contaminated snowcovers were studied using a two stream approximation of the radiative transfer equation. The effect of soot was calculated by two methods: independent scattering by ice grains and impurities and average refractive index for ice grains. Both methods predict a qualitatively similar effect of soot; the albedo is decreased and the extinction coefficient is increased compared to that for pure snow in the visible region; the infrared properties are largely unaffected. Quantitatively, however, the effect of soot is more pronounced in the average refractive index method. Soot contamination provides a qualitative explanation for several snow observations

    Decays of J/ψJ/\psi and ψ\psi^\prime into vector and pseudoscalar meson and the pseudoscalar glueball-qqˉq\bar{q} mixing

    Get PDF
    We introduce a parametrization scheme for J/ψ(ψ)VPJ/\psi(\psi^\prime)\to VP where the effects of SU(3) flavor symmetry breaking and doubly OZI-rule violation (DOZI) can be parametrized by certain parameters with explicit physical interpretations. This scheme can be used to clarify the glueball-qqˉq\bar{q} mixing within the pseudoscalar mesons. We also include the contributions from the electromagnetic (EM) decays of J/ψJ/\psi and ψ\psi^\prime via J/ψ(ψ)γVPJ/\psi(\psi^\prime)\to \gamma^*\to VP. Via study of the isospin violated channels, such as J/ψ(ψ)ρηJ/\psi(\psi^\prime)\to \rho\eta, ρη\rho\eta^\prime, ωπ0\omega\pi^0 and ϕπ0\phi\pi^0, reasonable constraints on the EM decay contributions are obtained. With the up-to-date experimental data for J/ψ(ψ)VPJ/\psi(\psi^\prime)\to VP, J/ψ(ψ)γPJ/\psi(\psi^\prime)\to \gamma P and PγγP\to \gamma\gamma, etc, we arrive at a consistent description of the mentioned processes with a minimal set of parameters. As a consequence, we find that there exists an overall suppression of the ψ3g\psi^\prime\to 3g form factors, which sheds some light on the long-standing "ρπ\rho\pi puzzle". By determining the glueball components inside the pseudoscalar η\eta and η\eta^\prime in three different glueball-qqˉq\bar{q} mixing schemes, we deduce that the lowest pseudoscalar glueball, if exists, has rather small qqˉq\bar{q} component, and it makes the η(1405)\eta(1405) a preferable candidate for 0+0^{-+} glueball.Comment: Revised version to appear on J. Phys. G; An error in the code was corrected. There's slight change to the numerical results, while the conclusion is intac

    Liquefaction of H2 molecules upon exterior surfaces of carbon nanotube bundles

    Get PDF
    We have used molecular dynamics simulations to investigate interaction of H2 molecules on the exterior surfaces of carbon nanotubes (CNTs): single and bundle types. At 80 K and 10 MPa, it is found that charge transfer occurs from a low curvature region to a high curvature region of the deformed CNT bundle, which develops charge polarization only on the deformed structure. The long-range electrostatic interactions of polarized charges on the deformed CNT bundle with hydrogen molecules are observed to induce a high local-ordering of H2 gas that results in hydrogen liquefaction. Our predicted heat of hydrogen liquefaction on the CNT bundle is 97.6 kcal kg^-1. On the other hand, hydrogen liquefaction is not observed in the CNT of a single type. This is because charge polarization is not developed on the single CNT as it is symmetrically deformed under the same pressure. Consequently, the hydrogen storage capacity on the CNT bundle is much higher due to liquefaction than that on the single CNT. Additionally, our results indicate that it would also be possible to liquefy H2 gas on a more strongly polarized CNT bundle at temperatures higher than 80 K

    The theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. I. The reactive force field ReaxFFHBN development

    Get PDF
    We present a new reactive force field ReaxFFHBN derived to accurately model large molecular and condensed phase systems of H, B, and N atoms. ReaxFFHBN has been tested against quantum calculation data for B–H, B–B, and B–N bond dissociations and for H–B–H, B–N–B, and N–B–N bond angle strain energies of various molecular clusters. The accuracy of the developed ReaxFFHBN for B–N–H systems is also tested for (i) H–B and H–B bond energies as a function of out of plane in H–B(NH2)3 and H–N(BH2)3, respectively, (ii) the reaction energy for the B3N3H6+H2-->B3N3H8, and (iii) crystal properties such as lattice parameters and equations of states for the hexagonal type (h-BN) with a graphite structure and for the cubic type (c-BN) with a zinc-blende structure. For all these systems, ReaxFFHBN gives reliable results consistent with those from quantum calculations as it describes well bond breaking and formation in chemical processes and physical properties. Consequently, the molecular-dynamics simulation based on ReaxFFHBN is expected to give a good description of large systems (>2000 atoms even on the one-CPU machine) with hydrogen, boron, and nitrogen atoms

    Theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. II. Collision, storage, and adsorption

    Get PDF
    Collision and adsorption of hydrogen with high incident kinetic energies on a single-walled boron nitride (BN) nanotube have been investigated. Molecular-dynamics (MD) simulations indicate that at incident energies below 14 eV hydrogen bounces off the BN nanotube wall. On the other hand, at incident energies between 14 and 22 eV each hydrogen molecule is dissociated at the exterior wall to form two hydrogen atoms, but only one of them goes through the wall. However, at the incident energies between 23 and 26 eV all of the hydrogen atoms dissociated at the exterior wall are found to be capable of going inside the nanotube and then to recombine to form hydrogen molecules inside the nanotube. Consequently, it is determined that hydrogen should have the incident energy >22 eV to go inside the nanotube. On the other hand, we find that the collisions using the incident energies >26 eV could result in damaging the nanotube structures. In addition our MD simulations find that hydrogen atoms dissociated at the wall cannot bind to either boron or nitrogen atoms in the interior wall of the nanotube

    Stochastic Biasing and Weakly Non-linear Evolution of Power Spectrum

    Get PDF
    Distribution of galaxies may be a biased tracer of the dark matter distribution and the relation between the galaxies and the total mass may be stochastic, non-linear and time-dependent. Since many observations of galaxy clustering will be done at high redshift, the time evolution of non-linear stochastic biasing would play a crucial role for the data analysis of the future sky surveys. In this paper, we develop the weakly non-linear analysis and attempt to clarify the non-linear feature of the stochastic biasing. We compute the one-loop correction of the power spectrum for the total mass, the galaxies and their cross correlation. Assuming the local functional form for the initial galaxy distribution, we investigate the time evolution of the biasing parameter and the correlation coefficient. On large scales, we first find that the time evolution of the biasing parameter could deviate from the linear prediction in presence of the initial skewness. However, the deviation can be reduced when the initial stochasticity exists. Next, we focus on the quasi-linear scales, where the non-linear growth of the total mass becomes important. It is recognized that the scale-dependence of the biasing dynamically appears and the initial stochasticity could affect the time evolution of the scale-dependence. The result is compared with the recent N-body simulation that the scale-dependence of the halo biasing can appear on relatively large scales and the biasing parameter takes the lower value on smaller scales. Qualitatively, our weakly non-linear results can explain this trend if the halo-mass biasing relation has the large scatter at high redshift.Comment: 29pages, 7 postscript figures, submitted to Ap

    Gravity and Large-Scale Non-local Bias

    Get PDF
    The relationship between galaxy and matter overdensities, bias, is most often assumed to be local. This is however unstable under time evolution, we provide proofs under several sets of assumptions. In the simplest model galaxies are created locally and linearly biased at a single time, and subsequently move with the matter (no velocity bias) conserving their comoving number density (no merging). We show that, after this formation time, the bias becomes unavoidably non-local and non-linear at large scales. We identify the non-local gravitationally induced fields in which the galaxy overdensity can be expanded, showing that they can be constructed out of the invariants of the deformation tensor (Galileons). In addition, we show that this result persists if we include an arbitrary evolution of the comoving number density of tracers. We then include velocity bias, and show that new contributions appear, a dipole field being the signature at second order. We test these predictions by studying the dependence of halo overdensities in cells of fixed matter density: measurements in simulations show that departures from the mean bias relation are strongly correlated with the non-local gravitationally induced fields identified by our formalism. The effects on non-local bias seen in the simulations are most important for the most biased halos, as expected from our predictions. The non-locality seen in the simulations is not fully captured by assuming local bias in Lagrangian space. Accounting for these effects when modeling galaxy bias is essential for correctly describing the dependence on triangle shape of the galaxy bispectrum, and hence constraining cosmological parameters and primordial non-Gaussianity. We show that using our formalism we remove an important systematic in the determination of bias parameters from the galaxy bispectrum, particularly for luminous galaxies. (abridged)Comment: 26 pages, 9 figures. v2: improved appendix
    corecore