4 research outputs found
The long journey from the giant-monopole resonance to the nuclear-matter incompressibility
Differences in the density dependence of the symmetry energy predicted by
nonrelativistic and relativistic models are suggested, at least in part, as the
culprit for the discrepancy in the values of the compression modulus of
symmetric nuclear matter extracted from the energy of the giant monopole
resonance in 208Pb. ``Best-fit'' relativistic models, with stiffer symmetry
energies than Skyrme interactions, consistently predict higher compression
moduli than nonrelativistic approaches. Relativistic models with compression
moduli in the physically acceptable range of K=200-300 MeV are used to compute
the distribution of isoscalar monopole strength in 208Pb. When the symmetry
energy is artificially softened in one of these models, in an attempt to
simulate the symmetry energy of Skyrme interactions, a lower value for the
compression modulus is indeed obtained. It is concluded that the proposed
measurement of the neutron skin in 208Pb, aimed at constraining the density
dependence of the symmetry energy and recently correlated to the structure of
neutron stars, will also become instrumental in the determination of the
compression modulus of nuclear matter.Comment: 9 pages with 2 (eps) figure
Relativistic Mean Field Model with Generalized Derivative Nucleon-Meson Couplings
The quantum hadrodynamics (QHD) model with minimal nucleon-meson couplings is
generalized by introducing couplings of mesons to derivatives of the nucleon
field in the Lagrangian density. This approach allows an effective description
of a state-dependent in-medium interaction in the mean-field approximation.
Various parametrizations for the generalized couplings are developed and
applied to infinite nuclear matter. In this approach, scalar and vector
self-energies depend on both density and momentum similarly as in the
Dirac-Brueckner theory. The Schr\"{o}diger-equivalent optical potential is much
less repulsive at high nucleon energies as compared to standard relativistic
mean field models and thus agrees better with experimental findings. The
derivative couplings in the extended model have significant effects on
properties of symmetric nuclear matter and neutron matter.Comment: 35 pages, 1 table, 10 figure