223 research outputs found

    Autosomal dominant hereditary spastic paraplegia: Novel mutations in the REEP1 gene (SPG31)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in the <it>SPG4 </it>gene (spastin) and in the <it>SPG3A </it>gene (atlastin) account for the majority of 'pure' autosomal dominant form of hereditary spastic paraplegia (HSP). Recently, mutations in the <it>REEP1 </it>gene were identified to cause autosomal dominant HSP type SPG31. The purpose of this study was to determine the prevalence of <it>REEP1 </it>mutations in a cohort of 162 unrelated Caucasian index patients with 'pure' HSP and a positive family history (at least two persons per family presented symptoms).</p> <p>Methods</p> <p>162 patients were screened for mutations by, both, DHPLC and direct sequencing.</p> <p>Results</p> <p>Ten mutations were identified in the <it>REEP1 </it>gene, these included eight novel mutations comprising small insertions/deletions causing frame shifts and subsequently premature stop codons, one nonsense mutation and one splice site mutation as well as two missense mutations. Both missense mutations and the splice site mutation were not identified in 170 control subjects.</p> <p>Conclusion</p> <p>In our HSP cohort we found pathogenic mutations in 4.3% of cases with autosomal dominant inheritance. Our results confirm the previously observed mutation range of 3% to 6.5%, respectively, and they widen the spectrum of <it>REEP1 </it>mutations.</p

    CMT subtypes and disease burden in patients enrolled in the Inherited Neuropathies Consortium natural history study: a cross-sectional analysis

    Get PDF
    BACKGROUND: The international Inherited Neuropathy Consortium (INC) was created with the goal of obtaining much needed natural history data for patients with Charcot-Marie-Tooth (CMT) disease. We analysed clinical and genetic data from patients in the INC to determine the distribution of CMT subtypes and the clinical impairment associated with them. METHODS: We analysed data from 1652 patients evaluated at 13 INC centres. The distribution of CMT subtypes and pathogenic genetic mutations were determined. The disease burden of all the mutations was assessed by the CMT Neuropathy Score (CMTNS) and CMT Examination Score (CMTES). RESULTS: 997 of the 1652 patients (60.4%) received a genetic diagnosis. The most common CMT subtypes were CMT1A/PMP22 duplication, CMT1X/GJB1 mutation, CMT2A/MFN2 mutation, CMT1B/MPZ mutation, and hereditary neuropathy with liability to pressure palsy/PMP22 deletion. These five subtypes of CMT accounted for 89.2% of all genetically confirmed mutations. Mean CMTNS for some but not all subtypes were similar to those previously reported. CONCLUSIONS: Our findings confirm that large numbers of patients with a representative variety of CMT subtypes have been enrolled and that the frequency of achieving a molecular diagnosis and distribution of the CMT subtypes reflects those previously reported. Measures of severity are similar, though not identical, to results from smaller series. This study confirms that it is possible to assess patients in a uniform way between international centres, which is critical for the planned natural history study and future clinical trials. These data will provide a representative baseline for longitudinal studies of CMT. CLINICAL TRIAL REGISTRATION ID NUMBER: NCT0119307

    Identification of proteins involved in neural progenitor cell targeting of gliomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glioblastoma are highly aggressive tumors with an average survival time of 12 months with currently available treatment. We have previously shown that specific embryonic neural progenitor cells (NPC) have the potential to target glioma growth in the CNS of rats. The neural progenitor cell treatment can cure approximately 40% of the animals with malignant gliomas with no trace of a tumor burden 6 months after finishing the experiment. Furthermore, the NPCs have been shown to respond to signals from the tumor environment resulting in specific migration towards the tumor. Based on these results we wanted to investigate what factors could influence the growth and progression of gliomas in our rodent model.</p> <p>Methods</p> <p>Using microarrays we screened for candidate genes involved in the functional mechanism of tumor inhibition by comparing glioma cell lines to neural progenitor cells with or without anti-tumor activity. The expression of candidate genes was confirmed at RNA level by quantitative RT-PCR and at the protein level by Western blots and immunocytochemistry. Moreover, we have developed <it>in vitro </it>assays to mimic the antitumor effect seen <it>in vivo</it>.</p> <p>Results</p> <p>We identified several targets involved in glioma growth and migration, specifically CXCL1, CD81, TPT1, Gas6 and AXL proteins. We further showed that follistatin secretion from the NPC has the potential to decrease tumor proliferation. <it>In vitro </it>co-cultures of NPC and tumor cells resulted in the inhibition of tumor growth. The addition of antibodies against proteins selected by gene and protein expression analysis either increased or decreased the proliferation rate of the glioma cell lines <it>in vitro</it>.</p> <p>Conclusion</p> <p>These results suggest that these identified factors might be useful starting points for performing future experiments directed towards a potential therapy against malignant gliomas.</p

    Bi-allelic variants in RNF170 are associated with hereditary spastic paraplegia.

    Get PDF
    Alterations of Ca2+ homeostasis have been implicated in a wide range of neurodegenerative diseases. Ca2+ efflux from the endoplasmic reticulum into the cytoplasm is controlled by binding of inositol 1,4,5-trisphosphate to its receptor. Activated inositol 1,4,5-trisphosphate receptors are then rapidly degraded by the endoplasmic reticulum-associated degradation pathway. Mutations in genes encoding the neuronal isoform of the inositol 1,4,5-trisphosphate receptor (ITPR1) and genes involved in inositol 1,4,5-trisphosphate receptor degradation (ERLIN1, ERLIN2) are known to cause hereditary spastic paraplegia (HSP) and cerebellar ataxia. We provide evidence that mutations in the ubiquitin E3 ligase gene RNF170, which targets inositol 1,4,5-trisphosphate receptors for degradation, are the likely cause of autosomal recessive HSP in four unrelated families and functionally evaluate the consequences of mutations in patient fibroblasts, mutant SH-SY5Y cells and by gene knockdown in zebrafish. Our findings highlight inositol 1,4,5-trisphosphate signaling as a candidate key pathway for hereditary spastic paraplegias and cerebellar ataxias and thus prioritize this pathway for therapeutic interventions

    Lanthanide-based time-resolved luminescence immunoassays

    Get PDF
    The sensitive and specific detection of analytes such as proteins in biological samples is critical for a variety of applications, for example disease diagnosis. In immunoassays a signal in response to the concentration of analyte present is generated by use of antibodies labeled with radioisotopes, luminophores, or enzymes. All immunoassays suffer to some extent from the problem of the background signal observed in the absence of analyte, which limits the sensitivity and dynamic range that can be achieved. This is especially the case for homogeneous immunoassays and surface measurements on tissue sections and membranes, which typically have a high background because of sample autofluorescence. One way of minimizing background in immunoassays involves the use of lanthanide chelate labels. Luminescent lanthanide complexes have exceedingly long-lived luminescence in comparison with conventional fluorophores, enabling the short-lived background interferences to be removed via time-gated acquisition and delivering greater assay sensitivity and a broader dynamic range. This review highlights the potential of using lanthanide luminescence to design sensitive and specific immunoassays. Techniques for labeling biomolecules with lanthanide chelate tags are discussed, with aspects of chelate design. Microtitre plate-based heterogeneous and homogeneous assays are reviewed and compared in terms of sensitivity, dynamic range, and convenience. The great potential of surface-based time-resolved imaging techniques for biomolecules on gels, membranes, and tissue sections using lanthanide tracers in proteomics applications is also emphasized

    Mitochondrial fragmentation and superoxide anion production in coronary endothelial cells from a mouse model of type 1 diabetes

    Get PDF
    Mitochondria frequently change their shapes by fusion and fission and these morphological dynamics play important roles in mitochondrial function and development as well as programmed cell death. The goal of this study is to investigate whether: (1) mitochondria in mouse coronary endothelial cells (MCECs) isolated from diabetic mice exhibit increased fragmentation; and (2) chronic treatment with a superoxide anion (O2 −) scavenger has a beneficial effect on mitochondrial fragmentation in MCECs. MCECs were freshly isolated and lysed for protein measurement, or cultured to determine mitochondrial morphology and O2 − production. For the ex vivo hyperglycaemia experiments, human coronary endothelial cells were used. Elongated mitochondrial tubules were observed in MCECs isolated from control mice, whereas mitochondria in MCECs from diabetic mice exhibited augmented fragmentation. The level of optic atrophy 1 (OPA1) protein, which leads to mitochondrial fusion, was significantly decreased, while dynamin-related protein 1 (DRP1), which leads to mitochondrial fission, was significantly increased in MCECs from diabetic mice. Diabetic MCECs exhibited significantly higher O2 − concentrations in cytosol and mitochondria than control MCECs. Administration of the O2 − scavenger TEMPOL to diabetic mice for 4 weeks led to a significant decrease in mitochondrial fragmentation without altering the levels of OPA1 and DRP1 proteins in MCECs. High-glucose treatment for 24 h significantly induced mitochondrial fragmentation, which was restored by TEMPOL treatment. In addition, excess O2 − production, either in cytosol or in mitochondria, significantly increased mitochondrial fragmentation. These data suggest that lowering the O2 − concentration can restore the morphological change in mitochondria and may help improve mitochondrial function in diabetic MCECs

    A longitudinal study of CMT1A using Rasch analysis based CMT neuropathy and examination scores

    Get PDF
    Objective: To evaluate the sensitivity of Rasch analysis-based, weighted Charcot-Marie-Tooth Neuropathy and Examination Scores (CMTNS-R and CMTES-R) to clinical progression in patients with Charcot-Marie-Tooth disease type 1A (CMT1A). Methods: Patients with CMT1A from 18 sites of the Inherited Neuropathies Consortium were evaluated between 2009 and 2018. Weighted CMTNS and CMTES modified category responses were developed with Rasch analysis of the standard scores. Change from baseline for CMTNS-R and CMTES-R was estimated with longitudinal regression models. Results: Baseline CMTNS-R and CMTES-R scores were available for 517 and 1,177 participants, respectively. Mean ± SD age of participants with available CMTES-R scores was 41 ± 18 (range 4–87) years, and 56% were female. Follow-up CMTES-R assessments at 1, 2, and 3 years were available for 377, 321, and 244 patients. A mixed regression model showed significant change in CMTES-R score at years 2 through 6 compared to baseline (mean change from baseline 0.59 points at 2 years, p = 0.0004, n = 321). Compared to the original CMTES, the CMTES-R revealed a 55% improvement in the standardized response mean (mean change/SD change) at 2 years (0.17 vs 0.11). Change in CMTES-R at 2 years was greatest in mildly to moderately affected patients (1.48-point mean change, 95% confidence interval 0.99–1.97, p < 0.0001, for baseline CMTES-R score 0–9). Conclusion: The CMTES-R demonstrates change over time in patients with CMT1A and is more sensitive than the original CMTES. The CMTES-R was most sensitive to change in patients with mild to moderate baseline disease severity and failed to capture progression in patients with severe CMT1A. ClinicalTrials.gov identifier NCT01193075

    Loss of function mutations in HARS cause a spectrum of inherited peripheral neuropathies.

    Get PDF
    Inherited peripheral neuropathies are a genetically heterogeneous group of disorders characterized by distal muscle weakness and sensory loss. Mutations in genes encoding aminoacyl-tRNA synthetases have been implicated in peripheral neuropathies, suggesting that these tRNA charging enzymes are uniquely important for the peripheral nerve. Recently, a mutation in histidyl-tRNA synthetase (HARS) was identified in a single patient with a late-onset, sensory-predominant peripheral neuropathy; however, the genetic evidence was lacking, making the significance of the finding unclear. Here, we present clinical, genetic, and functional data that implicate HARS mutations in inherited peripheral neuropathies. The associated phenotypic spectrum is broad and encompasses axonal and demyelinating motor and sensory neuropathies, including four young patients presenting with pure motor axonal neuropathy. Genome-wide linkage studies in combination with whole-exome and conventional sequencing revealed four distinct and previously unreported heterozygous HARS mutations segregating with autosomal dominant peripheral neuropathy in four unrelated families (p.Thr132Ile, p.Pro134His, p.Asp175Glu and p.Asp364Tyr). All mutations cause a loss of function in yeast complementation assays, and p.Asp364Tyr is dominantly neurotoxic in a Caenorhabditis elegans model. This study demonstrates the role of HARS mutations in peripheral neuropathy and expands the genetic and clinical spectrum of aminoacyl-tRNA synthetase-related human disease

    Accumulation of Endogenous LITAF in Aggresomes

    Get PDF
    LITAF is a 161 amino acid cellular protein which includes a proline rich N-terminus and a conserved C-terminal domain known as the simple-like domain. Mutations in LITAF have been identified in Charcot-Marie tooth disease, a disease characterized by protein aggregates. Cells transfected with cellular LITAF reveal that LITAF is localized to late endosomes/lysosomes. Here we investigated the intracellular localization of endogenous LITAF. We demonstrated that endogenous LITAF accumulates at a discrete cytoplasmic site in BGMK cells that we identify as the aggresome. To determine the domain within LITAF that is responsible for the localization of LITAF to aggresomes, we created a construct that contained the C-terminal simple-like domain of LITAF and found that this construct also localizes to aggresomes. These data suggest the simple-like domain is responsible for targeting endogenous LITAF to the aggresome

    Biallelic mutations in SORD cause a common and potentially treatable hereditary neuropathy with implications for diabetes

    Get PDF
    Here we report biallelic mutations in the sorbitol dehydrogenase gene (SORD) as the most frequent recessive form of hereditary neuropathy. We identified 45 individuals from 38 families across multiple ancestries carrying the nonsense c.757delG (p.Ala253GlnfsTer27) variant in SORD, in either a homozygous or compound heterozygous state. SORD is an enzyme that converts sorbitol into fructose in the two-step polyol pathway previously implicated in diabetic neuropathy. In patient-derived fibroblasts, we found a complete loss of SORD protein and increased intracellular sorbitol. Furthermore, the serum fasting sorbitol levels in patients were dramatically increased. In Drosophila, loss of SORD orthologs caused synaptic degeneration and progressive motor impairment. Reducing the polyol influx by treatment with aldose reductase inhibitors normalized intracellular sorbitol levels in patient-derived fibroblasts and in Drosophila, and also dramatically ameliorated motor and eye phenotypes. Together, these findings establish a novel and potentially treatable cause of neuropathy and may contribute to a better understanding of the pathophysiology of diabetes
    corecore