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Bi-allelic variants in RNF170 are associated with
hereditary spastic paraplegia
Matias Wagner 1,2,3,20, Daniel P.S. Osborn 4,20, Ina Gehweiler5,6, Maike Nagel5,6, Ulrike Ulmer5,6,

Somayeh Bakhtiari7,8, Rim Amouri9,10, Reza Boostani11, Faycal Hentati9,10, Maryam M. Hockley8,

Benedikt Hölbling5,6, Thomas Schwarzmayr3, Ehsan Ghayoor Karimiani4,12, Christoph Kernstock13,

Reza Maroofian4, Wolfgang Müller-Felber14, Ege Ozkan 4, Sergio Padilla-Lopez7,8, Selina Reich5,6,

Jennifer Reichbauer5,6, Hossein Darvish15, Neda Shahmohammadibeni15, Abbas Tafakhori16, Katharina Vill14,

Stephan Zuchner17,18, Michael C. Kruer7,8, Juliane Winkelmann1,3,19, Yalda Jamshidi 4,21 & Rebecca Schüle5,6,21*

Alterations of Ca2+ homeostasis have been implicated in a wide range of neurodegenerative

diseases. Ca2+ efflux from the endoplasmic reticulum into the cytoplasm is controlled by

binding of inositol 1,4,5-trisphosphate to its receptor. Activated inositol 1,4,5-trisphosphate

receptors are then rapidly degraded by the endoplasmic reticulum-associated degradation

pathway. Mutations in genes encoding the neuronal isoform of the inositol 1,4,5-trispho-

sphate receptor (ITPR1) and genes involved in inositol 1,4,5-trisphosphate receptor degra-

dation (ERLIN1, ERLIN2) are known to cause hereditary spastic paraplegia (HSP) and

cerebellar ataxia. We provide evidence that mutations in the ubiquitin E3 ligase gene RNF170,

which targets inositol 1,4,5-trisphosphate receptors for degradation, are the likely cause

of autosomal recessive HSP in four unrelated families and functionally evaluate the

consequences of mutations in patient fibroblasts, mutant SH-SY5Y cells and by gene

knockdown in zebrafish. Our findings highlight inositol 1,4,5-trisphosphate signaling as a

candidate key pathway for hereditary spastic paraplegias and cerebellar ataxias and thus

prioritize this pathway for therapeutic interventions.
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D isturbances in Ca2+ signaling are emerging as a common
pathophysiological pathway, and thus promising ther-
apeutic target in a broad range of neurodegenerative

diseases including Alzheimer’s disease1, Huntington’s disease2,
and spinocerebellar ataxias (SCA)3–5. As a major intracellular
Ca2+ reservoir, the endoplasmic reticulum (ER) is essential for
regulating intracellular Ca2+ concentrations. Regulated Ca2+

release from the ER is mediated by two types of Ca2+ release
channels: inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) and
ryanodine receptors (RyR). IP3Rs are large tetrameric complexes
located in the ER membrane; they are activated by IP3 released
from G-protein-coupled receptors in the plasma membrane.
Activation results in efflux of Ca2+ from the ER to the cytoplasm.
Subsequently degradation of activated IP3Rs is mediated by the
ER-associated degradation (ERAD) pathway6. Although the
degradation of activated IP3R via the ERAD pathway is well
understood, the basal turnover of IP3Rs is less clear with early
studies suggesting lysosomal degradation of IP3Rs7,8 as well as
more recent support for involvement of the ubiquitin proteasome
system9.

A complex of the proteins erlin-1 and erlin-2, encoded by the
genes ERLIN1 and ERLIN2, are key components of the ERAD
pathway, mediating ubiquitination of IP3Rs by the ubiquitin
E3 ligase RNF17010,11 and initiation of the proteasomal
degradation of IP3Rs12. Mutations in ERLIN1 and ERLIN2
cause Hereditary Spastic Paraplegia (HSP)13–20, a hetero-
geneous group of neurodegenerative motor neuron disorders
(MND), primarily affecting the long motor axons of the corti-
cospinal tract motor neurons and leading to the cardinal
symptoms of progressive lower limb spasticity and weakness21.
In complicated forms of HSP, neuronal systems other than the
corticospinal tract are affected and spastic paraplegia is
accordingly accompanied by additional neurological features
such as seizures, cognitive deficits, ataxia, deafness, extra-
pyramidal involvement, or peripheral neuropathy21,22. More
than 100 genes are known to cause autosomal dominant,
autosomal recessive, and X-linked forms of HSP; a subset of
these genes have been cataloged by OMIM (www.omim.org) as
Spastic Paraplegia Genes (SPG1–SPG80). Still, mutations in
known HSP genes explain only about two-third of cases21,23,24.
Mutations in novel HSP genes as well as novel mutation types
that cannot be reliably detected or interpreted by current
technology and prediction algorithms are likely to contribute to
this ‘missing heritability’ in HSPs.

A specific founder mutation in RNF170 has been associated
with autosomal dominant afferent ataxia (ADSA) owing to
degeneration of central sensory tracts, a phenotype unrelated to
HSP, in two Eastern Canadian families25–27.

Here, we show that mutations in RNF170 are associated with
autosomal recessive HSP in four unrelated families. Loss of
RNF170 in patient-derived fibroblasts and knockout SH-SY5Y
neuronal cell lines result in accumulation of the inositol
1,4,5-trisphosphate receptor that can be rescued upon RNF170
re-expression. In zebrafish, knockdown of rnf170 leads to neu-
rodevelopmental defects. Our findings highlight inositol 1,4,5-
trisphosphate signaling as a candidate pathway for the develop-
ment of future therapeutic interventions.

Results
Biallelic mutations in RNF170 cause HSP. In two siblings of an
apparently autosomal recessive German family with early-onset
HSP complicated by axonal peripheral neuropathy (family A,
Fig. 1a) we performed whole genome sequencing (WGS) to
identify the causative mutation, after extensive genetic testing for
mutations in known HSP genes had failed to confirm the

molecular diagnosis. We filtered for potentially biallelic rare
coding and splice region variants and identified changes in five
genes (DNAH5, FCRL2, GPR98, RNF170, ZNF646). Four of these
could be excluded by segregation analysis in additional family
members leaving only RNF170, encoding a ubiquitin E3 ligase
(Supplementary Data 1).

The homozygous splice region variant in RNF170 (NM_030954.3
[https://www.ncbi.nlm.nih.gov/nuccore/NM_030954.3]) c.396+3A
>G is located within a haplotype shared between the apparently
unrelated parents, pointing towards a potential founder effect
consistent with the origin of both parents from the same small
village in the Westerwald region in Germany. The c.396+3A>G
change is predicted to result in loss of the splice donor site of exon 5
(Berkeley Drosophila Genome Project28). To confirm the splice
effect we performed an RT-PCR of RNF170 mRNA derived
from peripheral blood and patient fibroblasts in patient A.4.
RT-PCR revealed expression of a shortened transcript in both
tissues, whereas the wildtype transcript could no longer be
detected. Sequence analysis of the aberrant transcript demonstrated
that this transcript lacked exon 5 (74-bp length), thereby leading to
a shift of the reading frame (p.Ala109Asnfs*9). The aberrant
transcript at least partially escapes nonsense mediated decay;
expression of the aberrant RNF170 transcript reaches 36/50% of
normal RNF170 mRNA expression levels in patient fibroblasts and
peripheral blood, respectively (Fig. 1a–e). A truncated protein,
however, which would be expected to be dysfunctional as it lacks
the C-terminal half of the RING domain, could not be detected
by western blot (Fig. 1f). Specificity of the antibody was confirmed
by staining for RNF170 in a CRISPR/Cas9 knockout SH-SY5Y
cell model.

Identification of RNF170 mutations in additional families. In
order to validate the association between biallelic loss-of-function
mutations in RNF170 and HSP we sought to identify further
individuals carrying RNF170 mutations using the web-based
collaboration platform GeneMatcher29. In addition to the index
case from family A, GeneMatcher returned three matches for
RNF170, all categorized with an HSP phenotype (Table 1). In all
families (families B–D), whole-exome sequencing (WES) had
been performed and led to selection of RNF170 as a potential
candidate gene. Candidate variants and genes identified using a
filter for (potentially) biallelic variants for each family are listed in
the Supplementary Data 1. In family B, a consanguineous Baluch
family from Iran, the homozygous missense variant c.304T>C,
p.Cys102Arg segregated in the family including all four affected
siblings with a LOD-score of 2.4 (Fig. 1g, h). The mutant residue
lies in the RING domain of RNF170; the affected cystine is one of
eight so-called zinc-organizing residues that collectively bind two
atoms of zinc and thus maintain the rigid structure of the RING
core domain30. In vitro mutation of Cys102 has previously been
shown to impair the ligase activity of RNF170 and suggested to
act in a dominant-negative fashion12.

In the Tunisian family C, trio WES was performed; analysis of
copy number variations using ExomeDepth31 and Pindel32

detected a homozygous intragenic deletion of exons 4–7
of RNF170 (Fig. 1i–m), resulting in the loss of not only the
complete RING domain but also two out of three transmembrane
domains. The variant was not seen in over 15,000 in-
house controls as well as 60,000 exomes of the exome aggregation
consortium database (as per August 2018). Breakpoint PCR
and subsequent Sanger sequencing specified the InDel mutation
as chr8:g .42,704,626_42,729,012delinsTTTTGGT (Fig. 1m).
Screening of additional Tunisian index cases with pure and
complicated forms of HSP (n= 34) for presence of this deletion
revealed no additional cases (Supplementary Fig. 1).
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Finally, in two affected siblings of the consanguineous
Iranian family D, a homozygous 2bp deletion was identified
(c.518_519delAG), leading to a shift in the reading frame and
introduction of a preterminal stop codon (p.Arg173Asnfs*49)

(Fig. 1n–o). The predicted protein, if expressed, lacks both
C-terminal transmembrane domains. All mutations showed
complete co-segregation with the phenotype in the respective
families (Fig. 1, Table 1).
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Clinical characterization of RNF170-related HSP. Clinically, the
most consistent finding among the nine affected individuals from
four unrelated families that were available for a detailed clinical
examination was lower limb predominant spastic paraparesis
with mild upper limb involvement after longer disease durations
(Table 1). Age of onset was invariably before the age of 5 with a
median of 2 years. Optic atrophy was present in all seven cases
that received a neuro-ophthalmological examination (Supple-
mentary Fig. 2). Saccadic pursuit in families A and D as well as
upper limb ataxia, ataxic gait, and cerebellar atrophy in B.3 and
B.4 indicate that the cerebellum can be variably affected in
RNF170-associated disease. Sensory evoked potentials revealed
subclinical involvement of the central sensory tracts at least in
later disease stages (A.4, A.5). Other features that were variably
observed included mild cervical dystonia (A.4) and axonal sen-
sorymotor peripheral neuropathy (A.4, A.5), findings consistent
with the diagnosis of HSP.

Mutations in RNF170 result in accumulation of IP3R. The
nature of the mutations observed in families A, C, and D suggest a
loss-of-function mechanism (Supplementary Table 1). In accor-
dance with the hypothesis that loss of RNF170 results in reduced
ubiquitination and proteasomal degradation of IP3R, basal levels of
IP3R-3 were increased 2.2–3.8-fold in patient fibroblasts (Fig. 2a, b)
compared with fibroblasts from healthy unrelated controls.
In addition, degradation of IP3R upon stimulation of IP3 release
with bradykinin in patient fibroblasts (A.4: c.396+3A>G, deletion
of exon 5 / C.4: g.42704626_42729012delinsTTTTGGT) was
completely abolished. In contrast, control fibroblasts demonstrated
a stable decrease of IP3R subunit 3 (IP3R-3, main IP3R isoform in
fibroblasts) levels to ~ 51% of baseline levels 60 min after brady-
kinin exposure (Fig. 2c, d).

Neurons, the primarily affected cell type in HSP, mainly
express IP3R subunit 1 (IP3R-1). We therefore turned to a
neuronal cell model to study the effect of deleterious RNF170
mutations on IP3R-1 levels and degradation. Using CRISPR/
Cas9, we introduced a homozygous 35-bp frameshift mutation
into the neuroblastoma cell line SH-SY5Y; loss of RNF170
protein expression was confirmed by western blot (Fig. 1f). In
concordance with our results obtained in patient fibroblasts,
IP3R-1 accumulated in SH-SY5Y(RNF170ko) cells with an
increase of IP3R-1 levels to ~ 1.8 fold of SH-SY5Y(RNF170wt)
cells (Fig. 3a, b). This accumulation could be reversed by stable
re-expression of wildtype RNF170 (SH-SY5Y(RNF170ko

(wt-HA)); “wildtype-rescue”), supporting causality of the
RNF170 status for the observed IP3R-1 accumulation (Fig. 3a, b).

We then tested the effect of RNF170 deficiency on stimulus-
dependent IP3R-1 degradation (Fig. 3c, d). Stimulation of
wildtype SH-SY5Y cells with carbachol led to a mild decrease
of IP3R-1 levels, which was most pronounced 2 h after
stimulation (2 h: 79% of baseline); however, the response to
stimulation was rather variable and changes over time were not

statistically significant (Dunnett’s test for multiple comparisons
with control (t= 0); p2h= 0.1722, p4h= 0.7233). In SH-SY5Y
(RNF170ko) cells, IP3R-1 degradation was completely abolished
(2 h: 107% of baseline). The difference between SH-SY5Y
(RNF170wt) and SH-SY5Y(RNF170ko) cells, however, did not
reach statistical significance, (genotype*time: p= 0.1956; Fig. 3c,
d; full-factorial repeated measures analysis). Even though these
results have to be interpreted with caution, the data imply a
trend towards normalization of IP3R-1 degradation by RNF170wt

re-expression.

Neurodevelopmental defects in rnf170 knockdown zebrafish.
To further understand the function of RNF170 during develop-
ment, we turned to the zebrafish as a versatile model of vertebrate
disease. The zebrafish orthologue, rnf170 (NM_214750.1
[https://www.ncbi.nlm.nih.gov/nuccore/NM_214750]), shares
61% nucleotides and 63% of amino acids with the human
RNF170-coding region or protein, respectively (Supplementary
Fig. 3, 4). Sequence conservation between zebrafish and human
suggests they may function similarly between species. To inves-
tigate how loss of rnf170 activity affects development, we designed
two non-overlapping morpholino oligonucleotides (MOs) against
intron 2- exon 3 (E3MO) and intron 3- exon 4 (E4MO) of the
zebrafish rnf170 sequence in order to abrogate appropriate
mRNA processing (Supplementary Fig. 5a). Microinjection of the
morpholinos perturbed normal rnf170 splicing, as identified
through RT-PCR at 48 hpf (Supplementary Fig. 5b).

Knockdown of rnf170 resulted in developmental defects visible
by 48 hpf, these include microphthalmia, microcephaly, and loss
of motility (Fig. 4a and Supplementary movies). These features
are consistent with the expression of rnf170 at 48 hpf, as observed
through in situ hybridization. rnf170 transcript was highly
expressed in the brain and less so within intersomitic structures
of the trunk (Supplementary Fig. 6a). Given the implications of
RNF170 with neurodevelopment, we further evaluated the
morphant phenotype through the analysis of acetylated tubulin
staining, a neural marker. Neurogenesis in the cranium was
remarkably reduced, specifically in the mid-hindbrain region
(Fig. 4b). Transverse cranial sections at 4 dpf stained with
haemotoxylin and eosin revealed structural differences in
morphant brains compared with control embryos, with a distinct
loss of ventricular cavities (Fig. 4d). Loss of movement, as
determined by a touch-evoked motility assay (Supplementary
movies 1–3) suggested motor neuron (MN) defects in morphant
embryos. Indeed, immunoflourescent staining of MNs in the
myotome revealed reduced antigen reactivity in 48 hpf morphant
embryos compared to controls, acteylated tubulin staining
appeared reduced and punctate, suggesting reduced MN function
(Supplementary Fig. 6b). To evaluate whether MN defects were
owing to delayed migration, embryos were further analyzed for
acetylated tubulin in the myotome at 4 dpf. Morphants displayed
persistent reduction in MN staining. The maintained expression

Fig. 1 Identification of biallelic RNF170 mutations in four families and functional characterization. a–f Identification of biallelic RNF170 mutations in four
families and functional characterization. a Pedigree of the family in which genome sequencing identified a homozygous splice region mutation in RNF170
segregating with the disease. b Confirmation of the intronic variant c.396+3A>G in genomic DNA. c Gel electrophoresis and d consecutive Sanger
sequencing confirmed the sole expression of a shorter transcript lacking exon 5 (wildtype transcript: 395bp; aberrant transcript: 321bp). e Quantitative real-
time PCR from blood and fibroblast derived cDNA from individual A.4 demonstrated significantly reduced RNF170 expression in comparison with three
control samples (Wilcoxon rank sum test, two-sided); f No residual RNF170 expression could be detected in patient fibroblasts. Note the unspecific band in
the RNF170 western blot as well as the specific 25 kDa band corresponding to RNF170, that is abolished upon knockout of RNF170 in SH-SY5Y cells.
g Pedigree of family B and h variant confirmation by Sanger sequencing. i Pedigree of family C and segregation in the family. j The deletion was confirmed
by visual analysis of split reads in the IGV browser. k, l In addition, primers were designed flanking the breakpoints as well as the deletion. m Subsequent
Sanger sequencing of the breakpoint fragment was used to further characterize the variant. n The frameshift variant segregating in family D could be
confirmed by o Sanger sequencing
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of acetylcholine receptors in morphant embryos suggests the
muscle is primed for innervation, which fails with reduced
Rnf170 function (Supplementary Fig. 6c). To validate specificity
of the morpholinos we attempted to rescue with full length
human RNF170. However, this resulted in exacerbation of the
developmental phenotype. Disruption of endogenous expression
by morpholinos, and global re-introduction of ectopic mRNA can
sometimes result in severe phenotypes when the gene of interest
is under tight spatial-temporal regulation33,34. Thus, the provi-
sion of a true rescue control here is likely to be impossible. For
further validation, we therefore designed an additional morpho-
lino against the translation start site (AUGMO). Congruently,
injections of the AUGMO produced embryos with general
morphology and motor neuron defects comparable with the
splice morphants (Supplementary Fig. 7, Supplementary movies 4,
5). Taken together, these data support the role of Rnf170 in
normal neurogenesis and importantly loss of rnf170 in zebrafish
recapitulates clinical features observed in the HSP patients.

To ascertain the functional relavance of variants identified in
the patient cohort, human RNF170 wildtype, the c.304T>C/p.
Cys102Arg missense variant (family B), and p.Arg173Asnfs*49
truncated RNA (family A) was injected into wildtype embryos
and phenotypes were assessed (Fig. 5). Embryo phenotypes
were categorized as normal, mild, moderate, and severe. 50% of
embryos injected with wildtype RNF170 RNA showed a
moderate to severe phenotype, which included truncation of
the body axis and reduction in eye size, indicating toxic effects
of RNF170 wildtype overexpression. In contrast, no mock-
injected control (MIC) embryos were categorized as either
moderate or severe. Injections of variant containing RNAs
showed results in line to what were observed in the mock-
injected controls (Fig. 5a, b).

Eye size and embryonic length was then used as quantifiable
features to be used for statistical analysis. One-way analysis
of variance (ANOVA) using Tukey’s multiple comparison test
support the qualtitative data: overexpression of wildtype
RNF170 significantly reduced embryonic length (wt RNA: mean
2227 μm ± SEM 202, n= 16 MIC: mean 2868 μm ± SEM 29.75,
n= 18. Adjusted P value < 0.0001) and eye size (wt RNA: mean
34785 μm2 ± SEM 2358. MIC: mean 47042 μm2 ± 731. Adjusted
P value <0.0001). No significant differences were observed
between MIC and variant containing RNA injections. These
data show that the variant RNAs are not as functionally active as
wildtype RNF170 and support the identified genetic variants as
disease causing (Fig. 5c, d).

Discussion
We here report biallelic mutations in the ubiquitin E3 ligase gene
RNF170 as a likely cause of autosomal recessive HSP. The
mutation types observed in the four families we describe in our
study genetically support a loss-of-function mechanism. Further
functional evidence that RNF170 deficiency may cause HSP
via a loss-of-function mechanism is derived from functional
studies that (i) demonstrated reduced expression of RNF170
transcript and absence of RNF170 protein in patient fibroblasts
(family A, Fig. 1f), (ii) increased basal levels and deficient
stimulus-dependent degradation of IP3R-3 in patient fibroblasts-
expressing mutant RNF170 protein (family A and C) as well as
(iii) increased basal levels of IP3R-1 in neuronal SH-SY5Y cells
and rescue by re-expression of RNF170wt. Furthermore, mor-
pholino oligonucleotide knockdown of rnf170 in zebrafish led to
neurodevelopmental defects and loss of motility, similar to other
zebrafish models of HSP35. Although rescue experiments to
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Fig. 2 Loss of RNF170 results in decreased degradation of IP3R-3 in patient fibroblasts. a Immunoblot analysis of IP3R-3 in fibroblasts derived from
individuals A.4 and C.4 shows increased expression levels in comparison with five controls (Co1, Co2, Co3, Co4, Co5). Western blots from a representative
experiment are shown. b Semiquantitative immunoblot analysis indicates significantly increased (Tukey–Kramer HSD, t-sided) IP3R-3 expression. In the
quantile blot, boxes indicate the 1st and 3rd quartile and median (center line); whiskers depict the 1st/3rd quartile ± 1.5* interquartile range). c, d IP3R-3
was activated by bradykinin stimulation of fibroblasts to trigger RNF170-dependent IP3R-3 degradation by the proteasomal system. IP3R-3 levels were
assessed at baseline as well as 30 and 60mins after stimulation. Physiological IP3R-3 reduction was observed in all three control cell lines (Co1, Co2, Co3),
whereas levels were unaltered in patient-derived fibroblasts (derived from patients A.4 and C.4) (full-factorial repeated measures analysis; means and
standard deviations are shown for each data point)
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further prove specificity of the morpholino were unsuccessful,
this is not unusual for endogenous genes subject to specific and
complex spatial-temporal regulation33,34.

The mechanism of IP3R-1 accumulation in neuronal SH-SY5Y
cells is not entierly clear as we were not able to demonstrate a
clear deficit of RNF170 deficient SH-SY5Y cells to degrade IP3R-1
upon stimulation with carbachol—in contrast to the strong defect
in stimulus-dependent IP3R-3 degradation we observed in
RNF170 mutant patient fibroblasts. Stimulation with carbachol
triggered only a partial degradation of IP3R-1 in wildtype SH-
SY5Y cells to ~80% of basal levels and the response was quite
variable. It therefore remains to be determined whether the
apparent IP3R-1 accumulation observed in SH-SY5Y(RNF170ko)
is the result of a defect in stimulus-dependent receptor degra-
dation or disturbed basal turnover.

The missense mutation p.Cys102Arg observed in family B affects
an amino-acid residue that, when mutated to serine in vitro in rat
(corresponding rat amino acid: Cys101) leads to loss of ubiquitin
ligase activity of RNF170, accumulation of IP3R and subsequent
failure to degrade IP3R upon stimulation12. However, similar to
other mutations affecting the RING domain of E3 ligases36,37,
the rat mutation p.Cys101Ser acts in a dominant-negative way at

least under conditions of overexpression in rat fibroblasts12. A
dominant-negative mode of action, however, could not be con-
firmed for this variant in our zebrafish model. When overexpressing
RNF170Cys102Arg in wildtype zebrafish, no adverse affects were
noted on the morphology, whereas overexpression of wildtype
RNF170 led to morphological abnormalities including reduced
embryonic length and reduced eye size. Although similar amounts
of both wildtype and mutant RNA were injected, we cannot exclude
the possibility that these differences are owing to reduced RNA
stability rather than aberrant protein function of the mutant
RNF170. The autosomal recessive mode of inheritance in family B
with absence of features associated with HSP in heterozygous
mutation carriers (e.g., B.1, B.2) as well as the absence of detectable
expression of RNF170Cys102Arg after overexpression in SH-SY5Y
(RNF170ko) cells (Fig. 3e) also argue against a clinically relevant
dominant-negative effect of the p.Cys102Arg mutation. A possible
explanation for this discrepancy might be the extent of over-
expression. Strong overexpression (via a CMV promotor in ref. 12)
might result in competition of mutant RNF170 for binding to the
erlin-1/2 complex that may not be functionally relevant under
in vivo conditions with equimolar amounts of wildtype and mutant
RNF170.
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Fig. 3 Effect of RNF170 mutations on IP3R-1 degradation and abundance in neuronal cells. a, b Immunoblot analysis of IP3R-1 in wildtype and knockout SH-
SY5Y cells (SH-SY5Y(RNF170wt)/n= 14 biologically independent samples; SH-SY5Y(RNF170ko)/n= 14 biologically independent samples) and after re-
expression of RNF170 in a knockout background (SH-SY5Y(RNF170ko(wt-HA))/n= 6 biologically independent samples). SH-SY5Y(RNF170ko) cells
demonstrate significant accumulation of IP3R-1 (ko: mean 0.437 ± 0.133; wt: mean 0.247 ± 0.043) that can be rescued by re-expression of RNF170
(rescue: mean 0.318 ± 0.066; Tukey–Kramer HSD, two-sided). In the quantile blot, boxes indicate the 1st and 3rd quartile and median (center line);
whiskers depict the 1st/3rd quartile ± 1.5* interquartile range. c, d IP3R-1 was activated by carbachol stimulation in neuronal SH-SY5Y cells, including wt
and CRISPR/Cas9 generated RNF170 knockout cell lines (SH-SY5Y(RNF170wt), SH-SY5Y(RNF170ko) as well as SH-SY5Y cells stably expressing wildtype
HA-tagged RNF170 in a knockout background (SH-SY5Y(RNF170ko(wt-HA)). IP3R-1 levels were quantified by western blot at baseline (t= 0 h) and 2 h/4 h
after stimulation. Neither the effect of the genotype on IP3R-1 degradation (wt vs. ko: p= 0.1806; repeated measures full-factorial analysis) nor the
interaction between genotype and time was significant (wt vs. ko, genotype*time: p= 0.1956; repeated measures full-factorial analysis). Nine independent
biological replicates were examined per genotype. Means and standard deviations are shown for each data point. e Expression of episomally expressed HA-
tagged RNF170 was analyzed by immunoblot in SH-SY5Y cells
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Phenotypically, we find that autosomal recessive HSP caused
by RNF170 deficiency is characterized by infancy onset pro-
gressive spastic paraplegia, accompagnied by optic atrophy of
variable severity and in some cases by cerebellar ataxia and
subclinical involvement of the central sensory tracts. A missense
mutation in RNF170 (c.595C>T, p.Arg199Cys), going back to a
common founder in the Eastern Canadian population, has pre-
viously been reported to cause autosomal dominant sensory
ataxia (ADSA, MIM #608984 [https://www.omim.org/entry/
608984]). ADSA manifests as late onset (4th–8th decade)

sensory ataxia owing to length-dependent affection of the central
sensory tracts without clear involvement of the cerebellum or
peripheral sensory nerves25–27. Although pyramidal signs were
described in a subset of patients (pyramidal signs without man-
ifest spasticity in 3/10 patients27), the overall ADSA phenotype
bears little resemblance to the RNF170-associated HSP we
describe here. Importantly, although the pathophysiology of
ADSA is not completely understood, there are some fundamental
differences on the molecular level between ADSA and RNF170-
HSP pathophysiology. In both, RNF170-HSP as well as ADSA,
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Fig. 4 MO knockdown of rnf170 results in morphological abnormalities, impaired neurogenesis, and motoneuron defects. a Representative images showing
the morphology of live zebrafish embryos at 48 hpf injected with two different splice-blocking rnf170 antisense MOs. rnf170morphants are characterized by
a shortened body axis, micropthalmia (arrows), microcephaly (brackets), and alterations in pigmentation (arrowheads). Scale bar represents 500 µm.
b Staining for the axonal marker acetylated tubulin at 48 hpf indicates impaired neurogenesis as shown by reduced neuronal density and migration
(brackets) in the developing hindbrain of rnf170morphants, compared with control embryos. Asterisks indicate the position of the eye, scale bar represents
50 µm. c Dorsal flatmount images of acetyated tubulin stained embryos at 48 hpf showing loss of migrating axons across the intertectal commissure
(arrow and asterisks), reduction of arborization in the tectum (Te), and thickening of the tracts of the habenular commissure (THC) and tracts of the
posterior commissure (TPC) (arrowheads). Scale bar 200 µm. The eye, trigeminal glia (Tg) and hindbrain glia (Hg) are given as further landmarks.
d Aberrant eye and brain development was observed in wax sections of rnf170 morphants at 4 dpf stained with H&E. Reduction of cranial width (brackets)
and ventricular cavities was apparent (arrowheads). Scale bar represents 100 µm
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RNF170 protein levels have been shown to be decreased, albeit
owing to distinct mechanisms. Although loss-of-function muta-
tions lead to reduced RNF170 expression in RNF170-HSP (here
shown in patient fibroblasts (Fig. 1f) and SH-SY5Y cells (Fig. 3e)),
RNF170595C>T levels in ADSA are decreased owing to increased
auto-ubiquitination and proteosomal degradation of mutant
RNF170. In RNF170-HSP, however, reduced RNF170 levels lead

to an increase in basal IP3R levels and abolish IP3R degradation
upon IP3 stimulation (Fig. 2) in patient fibroblasts. These findings
are in accordance with previous studies in in vitro and in vivo
RNF170 deficiency model systems, including demonstration of
increased basal and stimulation-dependent IP3R levels in gona-
dotrophic αT3-1 pituitary cells upon RNAi depletion or CRISPR/
Cas9 knockout of RNF1709,12, and an increase of Itpr1 proteins
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Fig. 5 Overexpression of mutant RNF170 in zebrafish. a, b Overexpression of wt but not mutant RNF170 results in morphological abnormalities in zebrafish
larvae. Representative images showing normal, mild, moderate, and severe morphology phenotypes in live zebrafish at 48 hpf. Overexpression of wt
RNF170 results in more severe phenotypes when compared with mock injected controls (MIC). Overexpression of truncated RNF170 as well as mutant
RNF170 harboring the mutation c.304T>C, which was identified in family B, does not result in morphological abnormalities implying that the missense
mutation results in a loss of protein function. Scale bar represents 400 μm. c, d Overexpression of wt but not mutant RNF170 results in shortened body axis
and smaller eye area. Representative images of MIC (n= 18) zebrafish larvae in comparison with overexpression of wt RNF170 (n= 16) as well as mutants
(c.304T>C, n= 26; and truncated RNA, n= 22) at 48 hpf. Only overexpression of wt RNF170 but not mutant RNF170 (both c.304T>C and truncated RNA)
result in reduced body length and eye area in comparison with MIC embryos further delineating a loss of function effect of the mutation c.304T>C
(one-way ANOVA with Tukey’s multiple comparison test)
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(main neuronal isoform of the IP3R) in cerebellum and spinal
cord of Rnf170−/− mice38. Most interestingly, Rnf170−/− mice
develop age dependent gait abnormalities, which could resemble
a HSP phenotype38. RNF170 deficiency might thus lead to
increased IP3-dependent signaling via IP3Rs, followed by
increased and potentially prolonged Ca2+-release from the ER. In
ADSA on the other hand, reduced levels of RNF170 do not
translate into increased IP3R signaling, as IP3R levels are unal-
tered in patient lymphoblasts and Ca2+ release from the ER is
even decreased in this model contrary to expectations.9 We
suggest a toxic gain of function mechanism for the ADSA mis-
sense variant that is unrelated to transcript dosage effects; this
hypothesis is supported by the dose-dependent toxicity of
RNF170Arg199Cys in zebrafish larvae26.

To put our findings into context, IP3R levels and thus IP3-
dependent Ca2+ release from the ER is tightly regulated by activity
of the Erlin1/2–RNF170 protein complex. Genetic discoveries in
recent years have emphasized the essential role of this pathway for
function and maintenance of central motor neurons and Purkinje
cells (Fig. 6). Mutations in ITPR1–genomic deletions (SCA15,
MIM#606658 [https://www.omim.org/entry/606658]) as well as
missense mutations (SCA29, MIM#117360)–have been shown to
cause autosomal dominant cerebellar ataxia, that can be variably
accompanied by aniridia (Gillespie syndrome, MIM#206700

[https://www.omim.org/entry/206700]). The latter can be caused
by heterozygous variants acting in a dominant-negative fashion as
well as biallelic loss-of-function mutations. Similar to RNF170,
ITPR1-related disease is thus associated with both autosomal
dominant and recessive inheritance. ITPR1 deletions as well as at
least some missense mutations lead to decreased Ca2+ release from
the ER upon stimulation in vitro39,40, confirmed also in vivo in
mice lacking two exons of the ITPR1 gene (ophisthotonos mice)41.

Truncating and missense mutations in ERLIN1 have been asso-
ciated with a range of phenotypes, from autosomal recessive
childhood-onset HSP with variable cerebellar ataxia and mild
cognitive impairment (SPG62, MIM#615681 [https://www.omim.
org/entry/615681])13 to amyotrophic lateral sclerosis14. Similarly,
biallelic truncating mutations in ERLIN2 cause infancy onset
complicated HSP with lower limb predominant spastic tetraparesis,
intellectual disability, pseudobulbar palsy and scoliosis (SPG18,
MIM#611225 [https://www.omim.org/entry/611225])15–17 as well
as primary lateral sclerosis18. Two distinct missense mutations in
ERLIN2 (Thr65Ile, Ser129Thr) have been associated with
autosomal-dominant pure HSP19,20. It has been shown recently that
knockout of ERLIN1 and ERLIN2 both lead to an increase in basal
IP3R-1 levels and impairment of IP3-dependent IP3R-1 degrada-
tion in gonadotrophic αT3-1 pituitary cells, changes that were also
present in αT3-1 cells expressing ERLIN2 carrying the pathogenic
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Fig. 6 RNF170-dependent degradation of activated IP3R and genetic disorders affecting this pathway. Upon activation of the IP3R with IP3, calcium is
released from the ER into the cytoplasm. This triggers the association of IP3R with the ERLIN1/2 complex leading to the ubiquitination of IP3R by the E3
ubiquitin ligase RNF170, resulting in the proteasomal degradation of IP3R. Mutations in all genes encoding components of this pathway are known to cause
hereditary neurologic disorders, especially spastic paraplegia and spinocerebellar ataxia
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missens mutant T65I20 and similar to the alterations we observed in
patient fibroblasts lacking RNF170 (A.4, C.4) and neuronal RNF170
knockout cells (SH-SY5Y(RNF170ko)).

Autosomal recessive and HSP-associated mutations in ERLIN1,
ERLIN2, and RNF170 as well as autosomal dominant missense
mutations in ERLIN2—in contrast to the RNF170 missense muta-
tion reported to cause ADSA9—are thus all predicted to lead to an
increase of basal IP3R levels and impairment of IP3R degradation.
How this hypothesized increase in basal and stimulation-dependent
IP3R levels would affect intracellular Ca2+ handling and how
phenotypic specificity of mutations targeting IP3 signaling is con-
veyed is currently unclear. Of note, however, genotype–phenotype
correlation suggests that increased IP3 signaling is associated with
an HSP phenotype while IP3 signaling seems to be reduced in
ataxia42. The picture becomes even more complex when consider-
ing that dysregulated IP3-dependent Ca2+ release from the ER has
not only been implicated in ITPR1-related ataxias, but also a range
of other neurodegenerative diseases including the autosomal
dominant polyQ-expansion ataxias SCA23,4 and SCA35, Hunting-
tons disease2,43, and Alzheimers disease44,45. IP3-dependent Ca2+

signaling may thus be a prime target for therapeutic intervention in
a wide range of neurodegenerative diseases.

Methods
Subjects. The study was conducted in line with the Declaration of Helsinki and
approved by the local institutional review boards at the University of Tübingen,
Germany (054/2013BO1), the Technincal University Munich, Germany (5360/12),
Next Generation Genetic Clinic (IR.MUMS.REC.1395.40), England, and Phoenix
Children’s Hospital, Phoenix, Arizona, USA (IRB # 15-080). All patients or their
parents gave written informed consent for clinical data collection, collection and
storage of biological samples, experimental analyses, and the publication of relevant
findings. Patient consent covers sharing of biological samples under certain con-
ditions; please contact the corresponding author.

Exome and genome sequencing. Exome and genome sequencing was carried out
in DNA extracted from blood derived leukocytes. For exome sequencing, exonic
regions were enriched using SureSelect Human All Exon XT V6 kits (Agilent, Santa
Clara, USA) for family B and C and using xGen Exome Research Panel v1.0 (IDT,
San Jose, USA) for family D. Genome-sequencing libraries for family A were
prepared using TruSeq DNA PCR-Free Library Prep (Illumina, San Diego, USA).
Paired-end sequencing was performed on HiSeq X HD v2.5 (family A), HiSeq2500
(family B), and HiSeq4000 (family C and D) platforms (all Illumina, San
Diego, USA).

NGS alignment and variant calling. Reads were aligned to the UCSC hg19
(GCF_000001405.13 [https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/])
human reference genome using Burrows-Wheeler Aligner.46 Single-nucleotide var-
iants and small insertions and deletions were called using Freebayes (family A),
GATK (family B and D) and SAMtools (family C)47,48. For a detailed description of
the bioinformatical tools used see (Supplementary Table 2).

Variant validation and breakpoint PCR. For sequence validation and segregation
analyses, the genomic loci of interest were PCR amplified and Sanger sequenced
using standard protocols. PCR conditions are available upon request. For family C,
breakpoint Sanger sequencing was used to confirm the variant identified by exome
sequencing, determine the exact breakpoints of the deletion and for segregation
analysis. In brief, a pair of primers (F1-R2, deletion spanning) was designed
spanning the deletion and two pairs flanking the breakpoints (F1–R1 and F2–R2,
breakpoint spanning) (Fig. 1k, l). The deletion spanning reaction results in a PCR
product if the deletion is present at a heterozygous or homozygous state and the
breakpoint spanning reactions yield PCR products when at least one wildtype allele
is present. Oligonucleotide primer sequences are listed in Supplementary Table 3.

Cell culture. Primary fibroblast cell lines were grown from a 4–6 mm skin biopsy
and were cultured in Dulbecco's Modified Eagle Medium (DMEM; Life Technol-
ogies, Carlsbad, USA) with 10% fetal bovine serum (FBS) and SH-SY5Y (ATCC
CRL-2266) cells in DMEM/F12 (Life Technologies) supplemented with 15% FBS at
37 °C and 5% CO2.

RNA extraction, cDNA studies, and qRT-PCR. RNA was isolated from whole
blood collected into PAXgene Blood RNA System tubes (PreAnalytiX, Qiagen,
Venlo, Netherlands) using PAXgene reagents according to the manufacturer’s
protocol. In fibroblasts, total RNA was prepared by using the High Pure RNA

Isolation Kit (Roche Applied Science, Penzberg, Germany) according to manu-
facturer’s instructions. RNA concentration and purity was determined using the
NanoDrop ND1000 spectrophotometer (Thermo Fisher Scientific, Waltham,
Massachusetts). Total RNA (500 ng) was reverse transcribed using Transcriptor
High Fidelity cDNA Synthesis Kit (Roche Applied Science) according to manu-
facturer’s instructions.

Gene expression was quantified by real-time PCR on the Real-Time PCR
System on a LightCycler 480 device (Roche Applied Science). A melting curve was
generated for each assay to check for specificity of the designed primers. Primer
sequences are listed in Supplementary Table 3.

All PCR experiments were performed with three technical replicates. Gene
expression of RNF170 was quantified in relation to three reference genes, i.e.,
RNF10, RNF111, and RPLP0. For quantification, the advanced relative
quantification module of the LightCycler software was used.

Immunoblot analysis. After cell lysis in RIPA buffer (Sigma-Aldrich, St. Louis,
Missouri) including protease inhibitor (cOMPLETE Mini, Roche Applied Science),
proteins were separated on a 3–8% NuPage Tris Acetate gel (IP3R-1 and IP3R-3,
Thermo Fisher Scientific) or 12% Bis Tris gel (RNF170) and transferred onto a
polyvinylidene difluoride membrane (IP3R-3 and RNF170; Immobilon, Merck Mil-
lipore, Burlington, Massachusetts) or nitrocellulose membrane (IP3R-1; Amerham
Protrane Premium 0.45 NC, GE Healthcare, Chicago, USA). After blocking in non-fat
dry milk TBS-T or Roche Block TBS-T, blots were probed with the primary antibody
(rabbit anti-RNF170, Atlas Antibodies HPA054621 1:500; mouse anti-IP3R-3,
BDBiosciences 610312, 1:1000; rabbit anti-IP3R, Abcam ab5804, 1:1000; mouse anti-
β-Actin, Sigma A5441, 1:20000; mouse anti-Vinculin, Sigma V9131, 1:100000; mouse
anti-GAPDH, Meridian H86504M, 1:10000), washed, incubated with the secondary
antibody (Peroxidase AffiniPure Goat Anti-Mouse IgG (H+L) (115-035-003),
1:10000 and Peroxidase AffiniPure Goat Anti-Rabbit IgG (H+L) (111-035-003),
1:10000, Jackson ImmunoResearch, Cambridgeshire, UK), washed again and then
developed with ECL solution (Immobilon Western HRP Substrat; WBKLS0500,
Merck Millipore) on the ChemiDOC MP Imaging System (Bio-Rad).

Stimulation-dependent IP3R degradation. To stimulate IP3 release and thus
IP3R, cells were treated with bradykinin (fibroblasts) or carbachol (SH-SY5Y).
Prior to stimulation, cells underwent serum starvation. For this, cells were first
washed in PBS (Sigma) and then cultured for 4 hours in DMEM (fibroblasts;
Thermo Fisher Scientific) or DMEM/F12 (SH-SY5Y; Thermo Fisher Scientific)
without FBS. Afterwards cells were treated with 300 nM bradykinin (fibroblasts;
B3259, Sigma, powder dissolved in ddH2O) or 1 mM carbachol (SH-SY5Y; C4382,
Sigma, dissolved in ddH2O) in the respective culture medium for t= 0, 30, 60 min
(fibroblasts) or t= 0, 2, 4 h (SH-SY5Y). After treatment, cells were washed in PBS
and scraped in adioimmunoprecipitation assay (RIPA) buffer (Sigma) including
protease inhibitor (cOMPLETE Mini, Roche Applied Sciences) (fibroblasts) or PBS
(SH-SY5Y). Immunoblots were then performed as described above.

Generation of SH-SY5Y(RNF170ko) cells using CRISPR/Cas9. To generate
RNF170 knockout SH-SY5Y cells, the Synthego Gene Knockout Kit was used. To
form RNP complexes, sgRNA and Cas9 protein were mixed in a ratio of 3:1. SH-
SY5Y cells were cultured to 80% confluency. In total, 105 cells were electroporated
(AMAXA 2b, Lonza KitV, program G-004). Two RNP complexes containing two
different sgRNAs (GAGGCUUGGUGCAGGCAGAU and AGUGUAGAACUGC
UGUCGAG) were simultaneous electroporated to obtain a 35-bp deletion causing
a frameshift. After electroporation single cells were seeded on 10 cm dishes. Single-
cell-derived colonies were picked manually and screened via PCR for presence of a
deletion. Primer sequences are listed in Supplementary Table 3.

Cloning of RNF170 constucts into neomycin selection plasmids. To generate
SH-SY5Y lines stably overexpressing RNF170 mutants, the wildtype and mutant
RNF170 coding sequence (RNF170wt-HA, RNF170 ΔEx5-HA, RNF170304T>C-HA)
was cloned into neomycin selection plasmids pSF-CMV-Ub-Neo/G418 Ascl
(Sigma-Aldrich), using the cloning sites BamHI and HindIII.

Generation of mutant SH-SY5Y lines. To re-express wildtype and mutant
RNF170 in SH-SY5Y(RNF170ko) cells (see above), we electroporated 5 × 106 cells
with 5µg plasmid (pSF-CMV-UB-NEO/G418 Ascl-RNF170wt-HA /-RNF170ΔEx5-
HA/-RNF170304T>C -HA) (AMAXA 2b, Lonza KitV, program G-004). One day
after nucleofection medium was changed to selection medium, composed of
DMEM/F12+ 15% FBS supplemented with 500 µg/ml G-418BC (A2912, Milli-
pore). Henceforth, cells were cultured under these selection conditions. Presence of
the plasmids was confirmed by Sanger sequencing (Supplementary Fig. 8, Sup-
plementary Table 3).

Zebrafish experiments. All zebrafish studies were conducted in compliance with
all relevant ethical regulations for animal testing. The studies were approved by the
local (St George’s University of London) institutional review board. Wildtype
(AB × Tup LF) zebrafish were used for all zebrafish experiments. Antisense MO
oligonucleotides (Genetools, LLC) were designed against the translational start site

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12620-9 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:4790 | https://doi.org/10.1038/s41467-019-12620-9 | www.nature.com/naturecommunications 11

https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


(AUGMO: CCATCACTGCTGATCATGTCATG), Intron 2-Exon 3 (E3MO:
CGCTCCTGATGGAGGAAAACACACG) and Intron 3-Exon 4 (E4MO:
CACCTGATGGAGAGACACAGCGTTA) splice sites of zebrafish rnf170. Mor-
pholinos were injected into embryos at the 1–2 cell stage and incubated at 28.5 °C
untiled the desired stage. A control morpholino was used for comparison, targeting
an intronic sequence in the human beta-globin gene. Specificity of the splice
morpholinos was confirmed by RT-PCR. RNA was extracted from 30 embryos per
experimental group at 48 hpf using TRIzol (Invitrogen, Thermo Fisher Scientific)
as described in ref. 49. First-strand cDNA was synthesized using random nanomers
(Sigma-Aldrich) and omniscript transcriptase (Qiagen), according to manu-
facturer’s instructions. Standard PCR was performed using primers surrounding
the Intron 2-Exon 3 splice site (E2F: GATCAGCAGTGATGGAGGGG, I2R:
CGTGTGTGTAAGAGAGAGAGTGT, E3R: CTCCTGACTCTCTGGGTGGA)
and Intron 3-Exon 4 splice site (E3F: TCCACCCAGAGAGTCAGGAG, I3R:
CTGATGGAGAGACACAGCGT, E4R: GTGTCCGCAGTTGGTCTCAA). For
RNF170 rescue experiments, site-directed mutagenesis was performed using Agi-
lent’s QuickChange II kit on RNF170 cloned into BamH1 and Not1 sites of the
pCS2+vector. PCR amplification to add SP6 promoter and short 3’ polyadenyla-
tion site was performed using the following primers: SP6 forward ATTTAGGTG
ACACTATAGAATGTACCCATACGATGTT and sPA reverse CATTTCGTAT
TTTATTTTCATCTAGTTAGCCTTTGG. RNA was transcribed using the SP6
ambion MAXIscript kit, following the manufacturer’s instructions. Approximately
100 pg of RNA was injected into wildtype embryos.

In situ hybridization was performed using standard protocols by cloning the
full-length zebrafish rnf170 into pGEMTeasy (Promega). Larvae were fixed with 4%
paraformaldehyde, embedded in wax, and sectioned followed by staining with
hematoxilin and eosin.

Wholemount immunohistochemistry was conducted using primary antbodies
against acteylated Tubulin (Sigma-Aldrich, T6793) and alpha Bungarotoxin
(Thermo Fisher, B13422) at 1:500 and 1:100 concentrations, respectively, combined
with appropriate secondary antibodies (Invitrogen, Thermo Fisher Scientific) used
at 1∶1000.

Statistical analysis. To compare continuous variables (e.g., IPR3-R levels in
patient fibroblasts/SH-SY5Y cells, body length, and eye area in zebrafish embryos)
across groups, a one-way ANOVA, followed by Tukey–Kramer HSD post hoc
testing was used. To compare the response to bradykinin/carbachol stimulation in
fibroblasts or SH-SY5Y across genotypes, we performed a full-factorial repeated
measures ANOVA with subject ID as a random effect and mutation status and
time as fixed effects. Statistical analysis was performed using Jmp14.2 for Mac.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of this study are available within
the paper and its supplementary information files. Whole-genome data sets for family A
are available to all registered users to the RD-Connect platform (https://platform.rd-
connect.eu) via publication of the Solve-RD data collection (http://solve-rd.eu); for the
remaining families consent restrictions preclude sharing of full data sets; only specific
information (e.g., secondary variants etc. but not full data sets) can be obtained upon
request from the corresponding author. The source data underlying the Fig. 1c, e, f,
Fig. 2, and Fig. 3 are provided as a Source Data file.
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