1,120 research outputs found

    Room-temperature ballistic transport in narrow graphene strips

    Full text link
    We investigate electron-phonon couplings, scattering rates, and mean free paths in zigzag-edge graphene strips with widths of the order of 10 nm. Our calculations for these graphene nanostrips show both the expected similarity with single-wall carbon nanotubes (SWNTs) and the suppression of the electron-phonon scattering due to a Dirichlet boundary condition that prohibits one major backscattering channel present in SWNTs. Low-energy acoustic phonon scattering is exponentially small at room temperature due to the large phonon wave vector required for backscattering. We find within our model that the electron-phonon mean free path is proportional to the width of the nanostrip and is approximately 70 μ\mum for an 11-nm-wide nanostrip.Comment: 5 pages and 5 figure

    Generation of transformable spheroplasts from mycelia, macroconidia, microconidia and germinating ascospores of Neurospora crassa

    Get PDF
    For Neurospora to be generally useful in molecular studies it would be desirable to be able to prepare transformable spheroplasts from mycelia and any of the three types of spores produced by this organism. Transformable spheroplasts are currently prepared from germinating macroconidia by digestion with Novozym 234 in the presence of 1.0 M sorbitol (Vollmer and Yanofsky 1986. PNAS 83:4869-4873). This method is efficient, but requires a 3-5 hr germination step. Elimination of the germination step would be a technical advance. In addition, the standard method is usable only with strains that form large numbers of macroconidia. Thus, interesting mutants that are incapable of forming macro- conidia cannot be used as recipients in cloning experiments. A procedure for generating spheroplasts from mycelia of N. crassa has been reported (Buxton and Radford 1984. MGG 196:339-344). While large numbers of spheroplasts are released by this procedure, the frequency of transformation is low, and we have experienced difficulty obtaining repeatable results. Since we want to clone genes implicated in the macroconidiation process, we devised a procedure that improves the efficiency of transformation of mycelial spheroplasts. As an alternative approach, we developed an transformation protocol for microconidia. Since aconidial mutations can be introduced into a microcycle microconidiating background such as mcm (Maheshwari 1991. Exp. Mycol. 15:346-350), transformation of microconidia represents a viable option for the cloning of conidiation genes. A procedure for generating competent spheroplasts from germinating ascospores also was developed and provides an additional strategy for cloning conidiation genes

    Theory of Spin polarized Tunneling in Superconducting Sr2RuO4

    Full text link
    A theory of tunneling conductance in ferromagnetic metal/insulator/triplet - supercondcutor junctions is presented for unitary and non-unitary spin triplet pairing states which are promising candidates for the superconducting paring symmetry of Sr2RuO4. As the magnitude of the exchange interaction in the ferromagnetic metal is increased, the conductance for the unitary pairing state below the energy gap is reduced in contrast to the case for the non-unitary pairing state

    Factors involved in Candida biofilm formation on acrylic surfaces

    Get PDF
    published_or_final_versio

    Ferromagnetic features on zero-bias conductance peaks in ferromagnet/insulator/superconductor junction

    Full text link
    We present a formula for tunneling conductance in ballistic ferromagnet/ferromagnetic insulator/superconductor junctions where the superconducting state has opposite spin pairing symmetry. The formula can involve correctly a ferromagnetism has been induced by effective mass difference between up- and down-spin electrons. Then, this effective mass mismatch ferromagnet and standard Stoner ferromagnet have been employed in this paper. As an application of the formulation, we have studied the tunneling effect for junctions including spin-triplet p-wave superconductor. The conductace spectra show a clear difference between two ferromagnets depending upon the way of normalization of the conductance. Especially, a essential difference is seen in zero-bias conductance peaks reflecting characteristics of each ferromagnets. From obtained results, it will be suggested that the measurements of the tunneling conductance in the junction provide us a useful information about the mechanism of itinerant ferromagnetism in metal.Comment: 8 pages, 8 figures, references added to the first versio

    Mouse MIM, a tissue-specific regulator of cytoskeletal dynamics, interacts with ATP-actin monomers through its C-terminal WH2 domain

    Get PDF
    The WH2 (WASP homology domain-2) is a small actin monomer-binding motif and is found in many proteins that regulate the actin cytoskeleton, including the beta-thymosins, ciboulot, WASP, and verprolin/WIP (WASP-interacting protein). In sequence database searches we identified a novel mouse protein containing a WH2 domain in its C-terminal region. This mouse gene also shows strong sequence homology to human MIM (Missing in Metastasis), a cDNA fragment that is present in non-metastatic but absent in metastatic bladder cancer cell lines. Northern blot and in situ hybridizations show that MIM is strongly expressed in the developing neurons and skeletal and cardiac muscles in mouse embryos. In adult mice, the strongest expression of MIM mRNA is in liver, outer layers of the kidney, and in the Purkinje cells of the brain. Recombinant MIM protein interacts with actin monomers and inhibits actin filament nucleation in vitro. However, the MIM/ATP-G-actin complex can participate in actin filament assembly at the barbed end. MIM binds ATP-G-actin with a higher affinity (K-D = 0.06 muM) than ADP-G-actin (K-D = 0.3 muM) and inhibits the nucleotide exchange on actin monomers. Site-directed mutagenesis demonstrates that the actin monomer-binding site resides in the C-terminal WH2 domain of MIM. Overexpression of mouse MIM in NIH 3T3 cells results in the disappearance of actin stress fibers and appearance of abnormal actin filament structures. These data show that MIM is an ATP-G-actin binding protein that regulates cytoskeletal dynamics in specialized mammalian cell-types

    The complement system and the inflammatory response in experimental chagas' disease

    Get PDF

    VEGF(164)-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization

    Get PDF
    Hypoxia-induced VEGF governs both physiological retinal vascular development and pathological retinal neovascularization. In the current paper, the mechanisms of physiological and pathological neovascularization are compared and contrasted. During pathological neovascularization, both the absolute and relative expression levels for VEGF(164) increased to a greater degree than during physiological neovascularization. Furthermore, extensive leukocyte adhesion was observed at the leading edge of pathological, but not physiological, neovascularization. When a VEGF(164)-specific neutralizing aptamer was administered, it potently suppressed the leukocyte adhesion and pathological neovascularization, whereas it had little or no effect on physiological neovascularization. In parallel experiments, genetically altered VEGF(164)-deficient (VEGF(120/188)) mice exhibited no difference in physiological neovascularization when compared with wild-type (VEGF(+/+)) controls. In contrast, administration of a VEGFk-1/Fc fusion protein, which blocks all VEGF isoforms, led to significant suppression of both pathological and physiological neovascularization. In addition, the targeted inactivation of monocyte lineage cells with clodronate-liposomes led to the suppression of pathological neovascularization. Conversely, the blockade of T lymphocyte-mediated immune responses with an anti-CD2 antibody exacerbated pathological neovascularization. These data highlight important molecular and cellular differences between physiological and pathological retinal neovascularization. During pathological neovascularization, VEGF(164) selectively induces inflammation and cellular immunity. These processes provide positive and negative angiogenic regulation, respectively. Together, new therapeutic approaches for selectively targeting pathological, but not physiological, retinal neovascularization are outlined

    A Protocol Guide for the N. crassa Yeast Artificial Chromosome Library

    Get PDF
    A yeast artificial chromosome (YAC) library of Neurospora crassa strain 74-OR23-1A has been constructed. This library has been used to clone 750 kb of contiguous DNA sequences from the centromere region of linkage group VII (M. Centola and J. Carbon. 1994. Mol. Cell. Biol. 14:1510-1519). The purpose of this article is explicitly to outline procedures that have been developed for library screening and chromosome walking
    • …
    corecore