342 research outputs found

    d-wave superconductivity and Pomeranchuk instability in the two-dimensional Hubbard model

    Full text link
    We present a systematic stability analysis for the two-dimensional Hubbard model, which is based on a new renormalization group method for interacting Fermi systems. The flow of effective interactions and susceptibilities confirms the expected existence of a d-wave pairing instability driven by antiferromagnetic spin fluctuations. More unexpectedly, we find that strong forward scattering interactions develop which may lead to a Pomeranchuk instability breaking the tetragonal symmetry of the Fermi surface.Comment: 4 pages (RevTeX), 4 eps figure

    Fermi-surface reconstruction involving two Van Hove singularities across the antiferromagnetic transition in BaFe2As2

    Full text link
    We report an angle-resolved photoemission study of BaFe2As2, a parent compound of iron-based superconductors. Low-energy tunable excitation photons have allowed the first observation of a saddle-point singularity at the Z point, as well as the Gamma point. With antiferromagnetic ordering, both of these two van Hove singularities come down below the Fermi energy, leading to a topological change in the innermost Fermi surface around the kz axis from cylindrical to tear-shaped, as expected from first-principles calculation. These singularities may provide an additional instability for the Fermi surface of the superconductors derived from BaFe2As2.Comment: 14 pages, 4 figures, 1 tabl

    Charge Ordering in Organic ET Compounds

    Full text link
    The charge ordering phenomena in quasi two-dimensional 1/4-filled organic compounds (ET)_2X (ET=BEDT-TTF) are investigated theoretically for the θ\theta and α\alpha-type structures, based on the Hartree approximation for the extended Hubbard models with both on-site and intersite Coulomb interactions. It is found that charge ordered states of stripe-type are stabilized for the relevant values of Coulomb energies, while the spatial pattern of the stripes sensitively depends on the anisotropy of the models. By comparing the results of calculations with the experimental facts, where the effects of quantum fluctuation is incorporated by mapping the stripe-type charge ordered states to the S=1/2 Heisenberg Hamiltonians, the actual charge patterns in the insulating phases of θ\theta-(ET)_2MM'(SCN)_4 and α\alpha-(ET)_2I_3 are deduced. Furthermore, to obtain a unified view among the θ\theta, α\alpha and κ\kappa-(ET)_2X families, the stability of the charge ordered state in competition with the dimeric antiferromagnetic state viewed as the Mott insulating state, which is typically realized in κ\kappa-type compounds, and with the paramagnetic metallic state, is also pursued by extracting essential parameters.Comment: 35 pages, 27 figures, submitted to J. Phys. Soc. Jp

    High-T_c Superconductivity with T_c = 52 K under Antiferromagnetic Order in Five-layered Cuprate Ba_2Ca_4Cu_5O_10(F,O)_2 with T_N = 175 K: 19F- and Cu-NMR Studies

    Full text link
    We report on the observation of high-T_c superconductivity (SC) emerging with the background of an antiferromagnetic (AFM) order in the five-layered cuprate Ba_2Ca_4Cu_5O_10(F,O)_2 through 19F-NMR and zero-field Cu-NMR studies. The measurements of spectrum and nuclear spin-lattice relaxation rates 19(1/T_1) of 19F-NMR give convincing evidence for the AFM order taking place below T_N = 175 K and for the onset of SC below T_c = 52 K, hence both coexisting. The zero-field Cu-NMR study has revealed that AFM moments at Cu sites are 0.14 mu_B at outer CuO_2 layers and 0.20 mu_B at inner ones. We remark that an intimate coupling exists between the AFM state and the SC order parameter below T_c = 52 K; the spin alignment in the AFM state is presumably changed in the SC-AFM mixed state.Comment: 4 pages, 4 figures, to be published in Journal of the Physical Society of Japan, Vol.80, No.

    Quantum-critical pairing with varying exponents

    Full text link
    We analyse the onset temperature T_p for the pairing in cuprate superconductors at small doping, when tendency towards antiferromagnetism is strong. We consider the model of Moon and Sachdev (MS), which assumes that electron and hole pockets survive in a paramagnetic phase. Within this model, the pairing between fermions is mediated by a gauge boson, whose propagator remains massless in a paramagnet. We relate the MS model to a generic \gamma-model of quantum-critical pairing with the pairing kernel \lambda (\Omega) \propto 1/\Omega^{\gamma}. We show that, over some range of parameters, the MS model is equivalent to the \gamma-model with \gamma =1/3 (\lambda (\Omega) \propto \Omega^{-1/3}). We find, however, that the parameter range where this analogy works is bounded on both ends. At larger deviations from a magnetic phase, the MS model becomes equivalent to the \gamma-model with varying \gamma >1/3, whose value depends on the distance to a magnetic transition and approaches \gamma =1 deep in a paramagnetic phase. Very near the transition, the MS model becomes equivalent to the \gamma-model with varying \gamma <1/3. Right at the magnetic QCP, the MS model is equivalent to the \gamma-model with \gamma =0+ (\lambda (\Omega) \propto \log \Omega), which is the model for color superconductivity. Using this analogy, we verified the formula for T_c derived for color superconductivity.Comment: 10 pages, 8 figures, submitted to JLTP for a focused issue on Quantum Phase Transition

    Spontaneous breaking of four-fold rotational symmetry in two-dimensional electronic systems explained as a continuous topological transition

    Full text link
    The Fermi liquid approach is applied to the problem of spontaneous violation of the four-fold rotational point-group symmetry (C4C_4) in strongly correlated two-dimensional electronic systems on a square lattice. The symmetry breaking is traced to the existence of a topological phase transition. This continuous transition is triggered when the Fermi line, driven by the quasiparticle interactions, reaches the van Hove saddle points, where the group velocity vanishes and the density of states becomes singular. An unconventional Fermi liquid emerges beyond the implicated quantum critical point.Comment: 6 pages, 4 figure

    Structural effect on the static spin and charge correlations in La1.875_{1.875}Ba0.125x_{0.125-x}Srx_{x}CuO4_{4}

    Get PDF
    We report the results of elastic neutron scattering measurements performed on 1/8-hole doped La1.875_{1.875}Ba0.125x_{0.125-x}Srx_{x}CuO4_{4} single crystals with {\it x}=0.05, 0.06, 0.075 and 0.085. In the low-temperature less-orthorhombic (LTLO, {\it Pccn} symmetry) phase, the charge-density-wave (CDW) and spin-density-wave (SDW) wavevectors were found to tilt in a low-symmetric direction with one-dimensional anisotropy in the CuO2_{2} plane, while they were aligned along the high-symmetry axis in the low-temperature tetragonal (LTT, {\it P}42_2/{\it ncm} symmetry) phase. The coincident direction of two wavevectors suggests a close relation between CDW and SDW orders. The SDW wavevector systematically deviates from the Cu-O bond direction in the LTLO phase upon Sr substitution and the tilt angle in the LTLO phase is smaller than that in the low-temperature orthorhombic phase (LTO, {\it B}{\it mab} symmetry) with comparable in-plane orthorhombic distortion. These results demonstrate a correlation between the corrugated pattern of CuO2_{2} plane and the deviations.Comment: 6 pages, 7figure

    Dual Nature of the Electronic Structure of the Stripe Phase

    Full text link
    High resolution angle-resolved photoemission measurements have been carried out on (La_1.4-xNd_0.6Sr_x)CuO_4, a model system with static stripes, and (La_1.85Sr_0.15)CuO_4, a high temperature superconductor (T_c=40K) with dynamic stripes. In addition to the straight segments near (pi, 0) and (0, pi) antinodal regions, we have identified the existence of nodal spectral weight and its associated Fermi surface in the electronic structure of both systems. The ARPES spectra in the nodal region show well-defined Fermi cut-off, indicating a metallic character of this charge-ordered state. This observation of nodal spectral weight, together with the straight segments near antinodal regions, reveals dual nature of the electronic structure of the stripes due to the competition of order and disorder

    Fermi-liquid instabilities at magnetic quantum phase transitions

    Full text link
    This review discusses instabilities of the Fermi-liquid state of conduction electrons in metals with particular emphasis on magnetic quantum critical points. Both the existing theoretical concepts and experimental data on selected materials are presented; with the aim of assessing the validity of presently available theory. After briefly recalling the fundamentals of Fermi-liquid theory, the local Fermi-liquid state in quantum impurity models and their lattice versions is described. Next, the scaling concepts applicable to quantum phase transitions are presented. The Hertz-Millis-Moriya theory of quantum phase transitions is described in detail. The breakdown of the latter is analyzed in several examples. In the final part experimental data on heavy-fermion materials and transition-metal alloys are reviewed and confronted with existing theory.Comment: 62 pages, 29 figs, review article for Rev. Mod. Phys; (v2) discussion extended, refs added; (v3) shortened; final version as publishe

    Polyoxometalates as potential next‐generation metallodrugs in the combat against cancer

    Get PDF
    Polyoxometalates (POMs) are an emerging class of inorganic metal oxides, which over the last decades demonstrated promising biological activities by the virtue of their great diversity in structures and properties. They possess high potential for the inhibition of various tumor types; however, their unspecific interactions with biomolecules and toxicity impede their clinical usage. The current focus of the field of biologically active POMs lies on organically functionalized and POM-based nanocomposite structures as these hybrids show enhanced anticancer activity and significantly reduced toxicity towards normal cells in comparison to unmodified POMs. Although the antitumor activity of POMs is well documented, their mechanisms of action are still not well understood. In this Review, an overview is given of the cytotoxic effects of POMs with a special focus on POM-based hybrid and nanocomposite structures. Furthermore, we aim to provide proposed mode of actions and to identify molecular targets. POMs are expected to develop into the next generation of anticancer drugs that selectively target cancer cells while sparing healthy cells.FCT - SFRH/BSAB/129821/2017info:eu-repo/semantics/publishedVersio
    corecore