65 research outputs found
Recommended from our members
Measurements of Core and Compressed Shell Temperature and Density Conditions in Thick-Wall Target Implosions at OMEGA
Direct Observation of Martensitic Phase-Transformation Dynamics in Iron by 4D Single-Pulse Electron Microscopy
The in situ martensitic phase transformation of iron, a complex solid-state transition involving collective atomic displacement and interface movement, is studied in real time by means of four-dimensional (4D) electron microscopy. The iron nanofilm specimen is heated at a maximum rate of ∼10^(11) K/s by a single heating pulse, and the evolution of the phase transformation from body-centered cubic to face-centered cubic crystal structure is followed by means of single-pulse, selected-area diffraction and real-space imaging. Two distinct components are revealed in the evolution of the crystal structure. The first, on the nanosecond time scale, is a direct martensitic transformation, which proceeds in regions heated into the temperature range of stability of the fcc phase, 1185−1667 K. The second, on the microsecond time scale, represents an indirect process for the hottest central zone of laser heating, where the temperature is initially above 1667 K and cooling is the rate-determining step. The mechanism of the direct transformation involves two steps, that of (barrier-crossing) nucleation on the reported nanosecond time scale, followed by a rapid grain growth typically in ∼100 ps for 10 nm crystallites
Recommended from our members
EXAFS Measurements of Laser-Shocked V and Ti and Crystal Phase Transformation in Ti
Extended X-Ray Absorption Fine Structure (EXAFS), using a laser-imploded target as a source, can yield the properties of laser-shocked metals on a nanosecond time scale. EXAFS measurements of vanadium shocked to {approx}0.4 Mbar yield the compression and temperature in good agreement with hydrodynamic simulations and shock-speed measurements. In laser-shocked titanium at the same pressure, the EXAFS modulation damping is much higher than warranted by the predicted temperature increase. This is shown to be due to the {alpha}-Ti to {omega}-Ti crystal-phase transformation, known to occur below {approx}0.1 Mbar for slower shock waves. The dynamics of material response to shock loading has been extensively studied in the past [1]. The goal of those studies has been to understand the shock-induced deformation and structural changes at the microscopic level [2]. Laser-generated shocks can be employed to broaden these studies to higher pressures ({approx}1 Mbar) and strain rates ({approx} 10{sup 7}-10{sup 8} s{sup -1}). Recently, laser-shocked materials have been studied with in-situ x-ray diffraction [3,4]. The goal of this work is to examine the use of in-situ EXAFS [5] as a complementary characterization of laser-shocked metals. EXAFS is the modulation in the x-ray absorption above the K edge (or L edge) due to the interference of the photoelectron waves with the waves reflected from neighboring atoms. The frequency of EXAFS modulations is related to the inter-particle distance, hence to the compression. The damping rate of the modulation can yield the lattice temperature, which is not readily available by other methods
Recommended from our members
Saturation of the Two-Plasmon Decay Instability in Long-Scale-Length Plasmas Relevant to Direct-Drive Inertial Confinement Fusion
Measurements of the hot-electron generation by the two-plasmon-decay instability are made in plasmas relevant to direct-drive inertial confinement fusion. Density-scale lengths of 400 {micro}m at n{sub cr}/4 in planar CH targets allowed the two-plasmon-decay instability to be driven to saturation for vacuum intensities above ~3.5 x 10{sup 14} W cm{sup -2}. In the saturated regime, ~1% of the laser energy is converted to hot electrons. The hot-electron temperature is measured to increase rapidly from 25 to 90 keV as the laser beam intensity is increased from 2 to 7 x 10{sup 14} W cm{sup -2}. This increase in the hot-electron temperature is compared with predictions from nonlinear Zakharov models
Recommended from our members
Material dynamics under extreme conditions of pressure and strain rate
Solid state experiments at extreme pressures (10-100 GPa) and strain rates ({approx}10{sup 6}-10{sup 8}s{sup -1}) are being developed on high-energy laser facilities, and offer the possibility for exploring new regimes of materials science. These extreme solid-state conditions can be accessed with either shock loading or with a quasi-isentropic ramped pressure drive. Velocity interferometer measurements establish the high pressure conditions. Constitutive models for solid-state strength under these conditions are tested by comparing 2D continuum simulations with experiments measuring perturbation growth due to the Rayleigh-Taylor instability in solid-state samples. Lattice compression, phase, and temperature are deduced from extended x-ray absorption fine structure (EXAFS) measurements, from which the shock-induced {alpha}-{omega} phase transition in Ti and the {alpha}-{var_epsilon} phase transition in Fe are inferred to occur on sub-nanosec time scales. Time resolved lattice response and phase can also be measured with dynamic x-ray diffraction measurements, where the elastic-plastic (1D-3D) lattice relaxation in shocked Cu is shown to occur promptly (< 1 ns). Subsequent large-scale molecular dynamics (MD) simulations elucidate the microscopic dynamics that underlie the 3D lattice relaxation. Deformation mechanisms are identified by examining the residual microstructure in recovered samples. The slip-twinning threshold in single-crystal Cu shocked along the [001] direction is shown to occur at shock strengths of {approx}20 GPa, whereas the corresponding transition for Cu shocked along the [134] direction occurs at higher shock strengths. This slip-twinning threshold also depends on the stacking fault energy (SFE), being lower for low SFE materials. Designs have been developed for achieving much higher pressures, P > 1000 GPa, in the solid state on the National Ignition Facility (NIF) laser
Demonstration of Fuel Hot-Spot Pressure in Excess of 50 Gbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA
A record fuel hot-spot pressure P[subscript hs] = 56±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium–tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ∼60% of the value required for ignition [A. Bose et al., Phys. Rev. E 93, LM15119ER (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.United States. Department of Energy (DE-NA0001944
Stark broadening in hot, dense laser-produced plasmas
Broadened Lyman- x-ray lines from neon X and argon XVIII radiators, which are immersed in a hot, dense deuterium or deuterium-tritium plasma, are discussed. In particular, these lines are analyzed for several temperature-density cases, characteristic of laser-produced plasmas; special attention paid to the relative importance of ion, electron, and Doppler effects. Static ion microfield distribution functions are tabulated
Controlling the dynamic range of a Josephson parametric amplifier
One of the central challenges in the development of parametric amplifiers is
the control of the dynamic range relative to its gain and bandwidth, which
typically limits quantum limited amplification to signals which contain only a
few photons per inverse bandwidth. Here, we discuss the control of the dynamic
range of Josephson parametric amplifiers by using Josephson junction arrays. We
discuss gain, bandwidth, noise, and dynamic range properties of both a
transmission line and a lumped element based parametric amplifier. Based on
these investigations we derive useful design criteria, which may find broad
application in the development of practical parametric amplifiers.Comment: 10 pages, 7 figure
Cryogneic-Target Performance and Implosion Physics Studies on OMEGA
Recent progress in direct-drive cryogenic implosions on the OMEGA Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] is reviewed. Ignition-relevant areal densities of ~200 mg/cm^2 in cryogenic D2 implosions with peak laser-drive intensities of ~5 x 10^14 W/cm^2 were previously reported [T. C. Sangster et al., Phys. Rev. Lett. 100, 185006 (2008)]. The laser intensity is increased to ~10^15 W/cm^2 to demonstrate ignition-relevant implosion velocities of 3–4 x 10^7 cm/ s, providing an understanding of the relevant target physics. Planar-target acceleration experiments show the importance of the nonlocal electron-thermal-transport effects for modeling the laser drive. Nonlocal and hot-electron preheat is observed to stabilize the Rayleigh–Taylor growth at a peak drive intensity of ~10^15 W/cm^2. The shell preheat caused by hot electrons generated by two-plasmon-decay instability was reduced by using Si-doped ablators. The measured compressibility of planar plastic targets driven with high-compression shaped pulses agrees well with one-dimensional simulations at these intensities. Shock mistiming has contributed to compression degradation of recent cryogenic implosions driven with continuous pulses. Multiple-picket (shock-wave) target designs make it possible for a more robust tuning of the shock-wave arrival times. Cryogenic implosions driven with double-picket pulses demonstrate somewhat improved compression performance at a peak drive intensity of ~10^15 W/cm^2
- …