30,158 research outputs found

    Similarity Solutions for Boundary Layer Flows on a Moving Surface in Non-Newtonian Power-Law Fluids

    Get PDF
    A similarity analysis of the boundary layer flow caused by the motion of a semi-infinite flat sulface in a non-Newtonian power-law fluid at rest is made in this paper. These similar solutions fall into two categories: similarity solutions corresponding to steady boundary layers over moving surfaces and similarity solutions corresponding to unsteady boundary layers past moving flat surfaces, respectively. Except in the special case n = 1/2 (pseudoplastic) and n = 1 (Newtonian) fluids, solutions of the first category problems must be obtainednumerically. However, for the second category analytical solutions are possible for a large class of pseudoplasticfluids (n < 1), including the case of a Newtonianfluid (n = 1)

    Verifying Policy Enforcers

    Get PDF
    Policy enforcers are sophisticated runtime components that can prevent failures by enforcing the correct behavior of the software. While a single enforcer can be easily designed focusing only on the behavior of the application that must be monitored, the effect of multiple enforcers that enforce different policies might be hard to predict. So far, mechanisms to resolve interferences between enforcers have been based on priority mechanisms and heuristics. Although these methods provide a mechanism to take decisions when multiple enforcers try to affect the execution at a same time, they do not guarantee the lack of interference on the global behavior of the system. In this paper we present a verification strategy that can be exploited to discover interferences between sets of enforcers and thus safely identify a-priori the enforcers that can co-exist at run-time. In our evaluation, we experimented our verification method with several policy enforcers for Android and discovered some incompatibilities.Comment: Oliviero Riganelli, Daniela Micucci, Leonardo Mariani, and Yli\`es Falcone. Verifying Policy Enforcers. Proceedings of 17th International Conference on Runtime Verification (RV), 2017. (to appear

    Charmed-Baryon Spectroscopy from Lattice QCD with N_f=2+1+1 Flavors

    Full text link
    We present the results of a calculation of the positive-parity ground-state charmed-baryon spectrum using 2+1+1 flavors of dynamical quarks. The calculation uses a relativistic heavy-quark action for the valence charm quark, clover-Wilson fermions for the valence light and strange quarks, and HISQ sea quarks. The spectrum is calculated with a lightest pion mass around 220 MeV, and three lattice spacings (a \approx 0.12 fm, 0.09 fm, and 0.06 fm) are used to extrapolate to the continuum. The light-quark mass extrapolation is performed using heavy-hadron chiral perturbation theory up to O(m_pi^3) and at next-to-leading order in the heavy-quark mass. For the well-measured charmed baryons, our results show consistency with the experimental values. For the controversial J=1/2 Xi_{cc}, we obtain the isospin-averaged value M_{Xi_{cc}}=3595(39)(20)(6) MeV (the three uncertainties are statistics, fitting-window systematic, and systematics from other lattice artifacts, such as lattice scale setting and pion-mass determination), which shows a 1.7 sigma deviation from the experimental value. We predict the yet-to-be-discovered doubly and triply charmed baryons Xi_{cc}^*, Omega_{cc}, Omega_{cc}^* and Omega_{ccc} to have masses 3648(42)(18)(7) MeV, 3679(40)(17)(5) MeV, 3765(43)(17)(5) MeV and 4761(52)(21)(6) MeV, respectively.Comment: 23 pages, 14 figure

    Antisense oligonucleotide: A potential therapeutic intervention for chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) is a global public health issue that places an increasing burden on the healthcare systems of both the developed and developing countries. CKD is a progressive and irreversible condition, affecting approximately 10% of the population worldwide. Patients that have progressed to end-stage renal disease (ESRD) require expensive renal replacement therapy, i.e., dialysis or kidney transplantation. Current CKD therapy largely relies on the use of angiotensin-converting enzyme inhibitors (ACEis) and angiotensin receptor blockers (ARBs). However, these treatments by no means halt the progression of CKD to ESRD. Therefore, the development of new therapies is urgently needed. Antisense oligonucleotide (ASO) has recently attracted considerable interest as a drug development platform. Thus far, eight ASO-based drugs have been granted approval by the US Food and Drug Administration for the treatment of various diseases. Herein, we review the ASOs developed for the identification of CKD-relevant genes and/or the simultaneous development of the ASOs as potential therapeutics towards treating CKD

    \Omega-deformation of B-twisted gauge theories and the 3d-3d correspondence

    Full text link
    We study \Omega-deformation of B-twisted gauge theories in two dimensions. As an application, we construct an \Omega-deformed, topologically twisted five-dimensional maximally supersymmetric Yang-Mills theory on the product of a Riemann surface Σ\Sigma and a three-manifold MM, and show that when Σ\Sigma is a disk, this theory is equivalent to analytically continued Chern-Simons theory on MM. Based on these results, we establish a correspondence between three-dimensional N=2\mathcal{N} = 2 superconformal theories and analytically continued Chern-Simons theory. Furthermore, we argue that there is a mirror symmetry between {\Omega}-deformed two-dimensional theories.Comment: 26 pages. v2: the discussion on the boundary condition for vector multiplet improved, and other minor changes mad

    A Prediction of the B*_c mass in full lattice QCD

    Get PDF
    By using the Highly Improved Staggered Quark formalism to handle charm, strange and light valence quarks in full lattice QCD, and NRQCD to handle bottom valence quarks we are able to determine accurately ratios of the B meson vector-pseudoscalar mass splittings, in particular, (m(B*_c)-m(B_c))/(m(B*_s)-m(B_s)). We find this ratio to be 1.15(15), showing the `light' quark mass dependence of this splitting to be very small. Hence we predict m(B_c*) = 6.330(7)(2)(6) GeV where the first two errors are from the lattice calculation and the third from existing experiment. This is the most accurate prediction of a gold-plated hadron mass from lattice QCD to date.Comment: 4 pages, 2 figure

    A consistent picture for large penguins in D -> pi+ pi-, K+ K-

    Full text link
    A long-standing puzzle in charm physics is the large difference between the D0 -> K+ K- and D0 -> pi+ pi- decay rates. Recently, the LHCb and CDF collaborations reported a surprisingly large difference between the direct CP asymmetries, Delta A_CP, in these two modes. We show that the two puzzles are naturally related in the Standard Model via s- and d-quark "penguin contractions". Their sum gives rise to Delta A_CP, while their difference contributes to the two branching ratios with opposite sign. Assuming nominal SU(3) breaking, a U-spin fit to the D0 -> K+ pi-, pi+ K-, pi+ pi-, K+ K- decay rates yields large penguin contractions that naturally explain Delta A_CP. Expectations for the individual CP asymmetries are also discussed.Comment: 24 pages, 8 figure

    Dynamics of a deformable self-propelled particle under external forcing

    Full text link
    We investigate dynamics of a self-propelled deformable particle under external field in two dimensions based on the model equations for the center of mass and a tensor variable characterizing deformations. We consider two kinds of external force. One is a gravitational-like force which enters additively in the time-evolution equation for the center of mass. The other is an electric-like force supposing that a dipole moment is induced in the particle. This force is added to the equation for the deformation tensor. It is shown that a rich variety of dynamics appears by changing the strength of the forces and the migration velocity of self-propelled particle

    Visualizing the emergence of the pseudogap state and the evolution to superconductivity in a lightly hole-doped Mott insulator

    Get PDF
    Superconductivity emerges from the cuprate antiferromagnetic Mott state with hole doping. The resulting electronic structure is not understood, although changes in the state of oxygen atoms appear paramount. Hole doping first destroys the Mott state yielding a weak insulator where electrons localize only at low temperatures without a full energy gap. At higher doping, the 'pseudogap', a weakly conducting state with an anisotropic energy gap and intra-unit-cell breaking of 90\degree-rotational (C4v) symmetry appears. However, a direct visualization of the emergence of these phenomena with increasing hole density has never been achieved. Here we report atomic-scale imaging of electronic structure evolution from the weak-insulator through the emergence of the pseudogap to the superconducting state in Ca2-xNaxCuO2Cl2. The spectral signature of the pseudogap emerges at lowest doping from a weakly insulating but C4v-symmetric matrix exhibiting a distinct spectral shape. At slightly higher hole-density, nanoscale regions exhibiting pseudogap spectra and 180\degree-rotational (C2v) symmetry form unidirectional clusters within the C4v-symmetric matrix. Thus, hole-doping proceeds by the appearance of nanoscale clusters of localized holes within which the broken-symmetry pseudogap state is stabilized. A fundamentally two-component electronic structure11 then exists in Ca2-xNaxCuO2Cl2 until the C2v-symmetric clusters touch at higher doping, and the long-range superconductivity appears.Comment: See the Nature Physics website for the published version available at http://dx.doi.org/10.1038/Nphys232
    corecore