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Abstract: Chronic kidney disease (CKD) is a global public health issue that places an increasing bur-
den on the healthcare systems of both the developed and developing countries. CKD is a progressive
and irreversible condition, affecting approximately 10% of the population worldwide. Patients that
have progressed to end-stage renal disease (ESRD) require expensive renal replacement therapy, i.e.,
dialysis or kidney transplantation. Current CKD therapy largely relies on the use of angiotensin-
converting enzyme inhibitors (ACEis) and angiotensin receptor blockers (ARBs). However, these
treatments by no means halt the progression of CKD to ESRD. Therefore, the development of new
therapies is urgently needed. Antisense oligonucleotide (ASO) has recently attracted considerable
interest as a drug development platform. Thus far, eight ASO-based drugs have been granted ap-
proval by the US Food and Drug Administration for the treatment of various diseases. Herein, we
review the ASOs developed for the identification of CKD-relevant genes and/or the simultaneous
development of the ASOs as potential therapeutics towards treating CKD.

Keywords: chronic kidney disease; antisense oligonucleotide; therapeutics

1. Introduction
1.1. Antisense Oligonucleotide

Antisense oligonucleotides (ASOs) are one of the most classical synthetic therapeutic
oligonucleotides that are able to modify gene expression. ASOs are typically designed to
regulate gene expression by specifically binding to the pre-mRNA or mRNA of the gene via
Watson–Crick base pairing [1–4]. Since the first report on the ASO-mediated inhibition of
gene expression in the late 1970s by pioneering researchers Zamecnik and Stephenson [5–7],
ASO technology has become a well-established platform for ASO-mediated RNA-targeting
therapy [8]. So far, the US Food and Drug Administration (FDA) has granted approval for
eight ASO drugs for clinical usage (Table 1 and Table S1) [9–25]. These successful clinical
translations inspire both the academia and pharmaceutical industry to develop ASO-based
drugs for the treatment of various diseases, either by the downregulation of disease-causing
gene expression or rescuing the expression of essential but defective genes.
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Table 1. Antisense oligonucleotide (ASO)-based drugs approved by the FDA for clinical applications.

No. ASO Drug Approval Year Indication Mechanism Ref.

1 Fomivirsen
(Vitravene®) 1998 Cytomegalovirus

(CMV) retinitis

Downregulate the gene
encoding CMV

immediate-early 2 protein
[9,10]

2 Mipomersen
(Kynamro®) 2013 Familial

hypercholesterolemia (FH)
Downregulate the gene APOB

encoding apolipoprotein B [11,12]

3 Eteplirsen
(Exondys 51®) 2016 Duchenne muscular

dystrophy (DMD)

Rescue the expression of
dystrophin through exon-51

skipping of the mRNA of
DMD gene

[13–16]

4 Nusinersen
(Spinraza®) 2016 Spinal muscular

atrophy (SMA)

Increase the production of the
survival motor neuron (SMN)
protein by exon-7 inclusion of

the mRNA of SMN2 gene

[17–20]

5 Inotersen
(Tegsedi®) 2018 Hereditary transthyretin

(TTR) amyloidosis
Downregulate the gene TTR

encoding transthyretin [21,22]

6 Golodirsen
(Vyondys 53®) 2019 DMD

Rescue the expression of
dystrophin through exon-53

skipping of the mRNA of
DMD gene

[23]

7 Viltolarsen
(Viltepso®) 2020 DMD

Rescue the expression of
dystrophin through exon-53

skipping of the mRNA of
DMD gene

[24]

8 Casimersen
(Amondys 45®) 2021 DMD

Rescue the expression of
dystrophin through exon-45

skipping of the mRNA of
DMD gene

[25]

1.2. Chronic Kidney Disease

Chronic kidney disease (CKD) is a leading public health issue worldwide [26]. Ap-
proximately 850 million people (~10% adult population) are affected by CKD [27]. CKD
accounted for 1.3% of years of life lost (YLL) in 2012 [28] and will become the fifth
most common cause of YLL worldwide by 2040 [29]. In the US, CKD affects ~13%
of the population [30], with more than 100,000 new patients starting on dialysis every
year [31]. CKD is defined as the persistently decreased function of the kidney for more
than 90 days [32]. Kidney dysfunction is shown by a glomerular filtration rate (GFR) of
less than 60 mL/min/1.73 m2, or markers of kidney damage such as hematuria, albumin-
uria, and a variety of abnormalities detected by histology or imaging [32,33]. In CKD, the
kidney undergoes a progressive and irreversible functional decline that can be classified
into six stages (G1: normal, GFR ≥ 90 mL/min/1.73 m2; G2: 60–89 mL/min/1.73 m2; G3a:
45–59 mL/min/1.73 m2; G3b: 30–44 mL/min/1.73 m2; G4: 15–29 mL/min/1.73 m2; and
G5: end-stage renal disease/kidney failure, <15 mL/min/1.73 m2). Patients who reach
end-stage renal disease (ESRD) require kidney replacement therapy, i.e., dialysis or kidney
transplantation, as their kidney is no longer able to maintain life in the long term [28].
However, less than half of patients needing kidney replacement therapy have access to
treatment [34], as many governments and individuals are faced with the unaffordability
of these costly therapies [35]. Moreover, kidney transplantation leads to a high risk of
mortality as a result of unavoidable continuous immunosuppression (anti-rejection), which
may cause infections and cancer development [36,37]. Therefore, it is imperative to delay
or even prevent the progression of CKD from early stage to ESRD.
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Although the causes of CKD vary geographically, diabetes accounts for 30–50% of
CKD worldwide [28]. In developed countries, diabetes and hypertension are the leading
causes of CKD [28]. Diabetic nephropathy is the main cause of ESRD in these countries
and the burden of ESRD resulting from type 2 diabetes is projected to increase fourfold in
decades to come [38,39], which is partly due to the increased prevalence of type 2 diabetes in
young people [40]. In developing countries, CKD from glomerulonephritis and interstitial
nephritis are more common as a result of the high prevalence of infections [41,42], such as
streptococcal infections, acquired immunodeficiency syndrome (AIDS), schistosomiasis,
leishmaniasis, hepatitis B, and hepatitis C. Notably, people affected by CKD are 5–10 times
more likely to die prematurely due to the complications of CKD than ESRD [43]. This
increased risk of death can be largely attributed to cardiovascular disease and cancer [44].

1.3. Cardiorenal Syndromes

Since the kidneys and heart have a bidirectional interorgan communication, dys-
function in one organ may cause dysfunction in the other organ, resulting in cardiorenal
syndromes, a complex disorder of both the heart and kidneys [45]. Cardiorenal syndromes
can be classified into five sub-types: type I [heart failure leading to acute kidney injury
(AKI)], type II (chronic heart failure leading to CKD), type III (AKI leading to acute heart
failure), type IV (CKD leading to heart failure), and type V (systemic condition such
as diabetes mellitus leading to both renal and cardiac dysfunction) [45]. The common
pathophysiological mechanisms in heart failure and CKD include dysfunction of the neuro-
hormonal system (leading to the activation of the renin–angiotensin–aldosterone system),
abnormal endothelial activation, reduced intestinal perfusion, and release of proinflam-
matory cytokines such as TNF-α, IL-1, and IL-6 [46]. These mechanisms simultaneously
and sequentially contribute to cardiorenal syndromes, ultimately resulting in fibrosis and
dysfunction in both organs [46].

2. Conventional Therapies and Their Limitations

Current standard of care for the treatment of CKD contains angiotensin-converting
enzyme (ACE) inhibitors (ACEis) and angiotensin receptor (AR) blockers (ARBs) [47,48].
Drugs of these classes to some extent reduce the risk of kidney failure and major cardiovas-
cular events [49,50]. The renoprotective effect of ACEis and ARBs is attributable to their
ability to normalize glomerular hyperfiltration in kidneys [51,52]. However, both therapies
slow but do not halt the progression of CKD from early stage to ESRD [53]. In order
to improve their renal protection effect, combinational treatments including ACEi plus
ARB, renin inhibitor plus ACEi, or renin inhibitor plus ARB were evaluated; however, the
results were unsatisfactory in that unacceptable side effects such as hypotension, increased
hyperkalemia, and AKI were observed, leading to the termination of the trials [54,55]. With
the lack of clinically validated therapeutic targets (apart from ACE, AR, and renin) of CKD
within or beyond the renin–angiotensin system, it is critically important to identify new
targets for CKD in an attempt to develop novel therapeutics [53]. The targeted inhibition
of gene expression by nucleic acid-based interventions can be a useful strategy for the
identification and validation of potential CKD-relevant targets and the simultaneous or
subsequent development of ASO-based therapy for CKD.

3. Antisense Oligonucleotide as Therapeutics
3.1. Mechanisms of Action

ASOs are short single-stranded chemically modified DNAs or RNAs that are about
15 to 30 nucleotides in length, complementary to their target pre-mRNA or mRNA. Upon
binding specifically to their RNA targets and forming a target/ASO duplex, ASOs are
capable of modulating gene expression through different mechanisms of action. These
include: (1) induction of Ribonuclease H (RNase H)-mediated mRNA decay; (2) steric
blockade that either modifies splicing by hindering the splicing factors from binding to pre-
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mRNA or represses gene expression by avoiding the 5′-capping of pre-mRNA or impeding
the translational machinery from associating with mRNA (Figure 1) [2,56–61].
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Figure 1. Mechanisms of action of ASO. (A) RNase H recruitment by ASO/mRNA duplex and in-
duced mRNA degradation; (B1) splice modulation, (B2) inhibition of 5′ capping, and (B3) translational
arrest caused by steric-blocking ASOs.

RNase H-mediated mRNA degradation is the most used ASO mechanism for the
purpose of gene knockdown, which allows for the exploration of gene function, identi-
fication and validation of potential disease-relevant genes, and therapeutic application
by downregulating disease-causing gene expression [62]. The FDA has so far granted
three RNase H-competent ASO drugs, fomivirsen (Vitravene®), mipomersen (Kynamro®),
and inotersen (Tegsedi®) as therapies for cytomegalovirus (CMV) retinitis, familial hyper-
cholesterolemia (FH), and hereditary transthyretin (TTR) amyloidosis, respectively [63].
Splice modulation by steric-blocking ASOs has been widely used to rescue the expres-
sion of essential but defective genes due to frameshifting mutations [64]. Splice mod-
ulation by exon skipping can restore the open reading frame by removing premature
termination codons caused by mutations and restore the production of functional es-
sential proteins. Since 2016, the FDA has approved five splice-modulating ASO drugs,
eteplirsen (Exondys 51®), nusinersen (Spinraza®), golodirsen (Vyondys 53®), viltolarsen
(Viltepso®), and casimersen (Amondys 45®) for the treatment of Duchenne muscular dys-
trophy (DMD) (eteplirsen, golodirsen, viltolarsen, casimersen) and spinal muscular atrophy
(SMA) (nusinersen), respectively.

3.2. Chemical Modification and Rational Design of ASO

ASOs composed of natural deoxyribonucleotides or ribonucleotides are not suitable
for research and/or therapeutic purposes as they are easily degraded by extracellular
and intracellular nucleases, lacking target-binding affinity and specificity [63]. In order to
resolve these problems, chemically modified nucleotides, i.e., nucleotide analogues, are
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used for constructing ASO sequences [65–70] (Figure 2). Each nucleotide comprises a sugar
(either ribose or deoxyribose), a phosphate (internucleotide linkage), and a nitrogenous
base, and these components can be chemically modified alone or combinedly. The earliest
attempt to modify a nucleotide was focused on replacing the non-bridging oxygen atom of
phosphate by other atoms or groups. Examples include phosphorothioate (PS), phospho-
rodithioate (PS2), methyl phosphonate (MP), boranophosphate (PB), and phosphonoacetate
(PACE) [71–75] (Figure 2). PS modification (the oxygen is replaced by sulfur) enhances the
nuclease stability of ASOs and prolongs their half-life in plasma. However, this advan-
tage is compromised by increased toxicity. Mesyl phosphoramidate (MsPA) has attracted
considerable attention recently as it shows significant advantages over PS in nuclease
stability, binding affinity, and physiological safety [76–78]. Therefore, MsPA is considered
a potential alternative to PS [76]. The sugar moiety of the nucleotide is the hotspot of
modification. A number of nucleotide analogs with modified sugar have been discovered
or invented, such as 2′-O-methyl (2′-OMe) [79,80], 2′-O-methoxyethyl (2′-MOE) [81], 2′-O,
4′-C-ethylenebridged nucleic acid (ENA) [82], locked nucleic acid (LNA) [83–85], threose
nucleic acid (TNA) [86], 2′-amino (2′-NH2) [87], 2′-fluoro (2′-F) [88], 2′-fluroarabino nucleic
acid (2′-FANA) [89], 1,5-anhydro hexitol nucleic acid (HNA) [90], cyclohexenyl nucleic acid
(CeNA) [90], altritol nucleic acid (ANA) [90], and 2′-4′ constrained ethyl (cEt) [91] (Figure 2).
Sugar modification may confer ASOs with improved nuclease resistance and enhanced
hybridization affinity. Efforts have also been made on developing nucleotide analogues
with a completely replaced backbone (i.e., sugar moiety plus phosphate moiety), such as
peptide nucleic acid (PNA) [92] and phosphorodiamidate morpholino oligomer (PMO) [93]
(Figure 2). A PNA monomer contains an uncharged N-(2-aminoethyl)-glycine, while a
PMO monomer consists of a morpholine ring with a neutral phosphorodiamidate link-
age. PNA and PMO display excellent target binding affinity and stability against cellular
nuclease hydrolysis. Nucleobase modifications are not as commonly used as the above-
described modifications on internucleotide linkage, sugar, or backbone in constructing
ASO sequences [56].

An ASO can be synthesized as a uniformly modified sequence, a gapmer, or a mixmer
(Figure 3 and Figure S1). Uniform modification and mixmer-design confer ASO maximized
improvement in terms of nuclease stability and binding affinity. However, most of the
modifications (except for the above-mentioned modified linkages PS, PS2, PB, PACE,
MsPA, excluding MP) are unable to induce target RNA degradation as these analogues
do not support RNase H-mediated cleavage. Therefore, uniformly modified ASOs are
solely used as a steric blocker to induce splice switching or translational repression. In
order to retain the ability of ASOs in recruiting RNase H and improve their nuclease
stability at the same time, gapmer design emerges as the perfect solution [94–97]. A
gapmer-like ASO usually consists of an unmodified or PS-modified central sequence
(~10 deoxyribonucleotides) and sugar moiety-modified flanking sequences (~5 nucleotide
analogues) on both its sides (Figure 3 and Figure S1). The central DNA region ensures that
the ASO is capable of inducing RNase H-dependent target hydrolysis, while the flanking
modified sequences protect the ASO from nuclease attack and enhance binding affinity.
Most recently, Anderson et al. reported that combination of PS and MsPA linkages could
further improve the therapeutic index and duration of effect of gapmer-like ASOs [78].
Most of the nucleotide analogues can be used to synthesize chimeric ASOs (i.e., gapmer and
mixmer) that contain more than one chemistry in an attempt to optimize the stability and
efficacy of ASOs. However, it has been challenging to develop a flexible and robust synthetic
route that allows for the generation of chimeric PMO sequencing with other analogues.
To overcome this, Veedu et al. developed an analogue of PMO called morpholino nucleic
acid (MNA), allowing the synthesis of chimeric ASO with both morpholine ring-containing
nucleotide and 2′-OMe nucleotides, providing a promising solution for the incompatibility
of PMO [98]. More recently, Caruthers et al. reported the synthesis of a new analogue
called thiophosphoramidate morpholino (TMO), which allows the easy incorporation of
morpholino–PS moieties and other sugar modifications [99]. To date, PS, 2′-MOE, and PMO
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are the only three chemistries used in FDA-approved ASO drugs. Specifically, fomivirsen is
a 21 mer DNA sequence uniformly modified by PS [9,10]; both mipomersen and inotersen
are 20 mer 5-10-5 2′-MOE-PS gapmers (5-10-5 MOEPS-DNAPS-MOEPS design) [11,12,21,22],
i.e., they contain a central 10 mer DNA-PS sequence and two 5 mer flanking 2′-MOE-PS
sequences; nusinersen is an 18 mer ASO uniformly modified by 2′-MOE-PS [17–20]; and
the four DMD-targeting fully PMO-modified drugs, eteplirsen, golodirsen, viltolarsen, and
casimersen have 30, 25, 21, and 22 monomers, respectively [13–16,23–25].

Figure 2. Examples of modified nucleic acid monomer (nucleotide analogue). PS: phosphorothioate,
PS2: phosphorodithioate, MP: methyl phosphonate, PB: boranophosphate, PACE: phosphonoacetate,
MsPA: mesyl phosphoramidate, 2′-OMe: 2′-O-methyl, 2′-MOE: 2′-O-methoxyethyl, ENA: 2′-O, 4′-C-
ethylenebridged nucleic acid, LNA: locked nucleic acid, TNA: threose nucleic acid, 2′-NH2: 2′-amino,
2′-F: 2′-fluoro, 2′-FANA: 2′-fluroarabino nucleic acid, HNA: 1,5-anhydro hexitol nucleic acid, CeNA:
cyclohexenyl nucleic acid, ANA: altritol nucleic acid, cEt: 2′-4′ constrained ethyl, PNA: peptide
nucleic acid, PMO: phosphorodiamidate morpholino oligomer, MNA: morpholino nucleic acid, and
TMO: thiophosphoramidate morpholino oligomer.

3.3. ASO, siRNA, and miRNA

ASO and small interfering RNA (siRNA) are the two most widely used nucleic acid-
based strategies for the transient silencing of gene expression [100]. Different from ASO,
siRNA has two strands and degrades target mRNA by RNA-induced silencing complex
(RISC) instead of RNase H [101–103]. Since unmodified RNAs possess a higher potency
than oligodeoxynucleotides, it is relatively easier to obtain a potent siRNA than an ASO.
Therefore, siRNA is considered a more preferable option for in vitro studies [101]. Although
lower doses of therapeutic siRNAs are sufficient to cause target gene knockdown, and they
exhibit a longer duration of activity as compared to common ASOs, off-target effects of
siRNAs (such as microRNA-like off-target effects and activation of Toll-like receptors) can
lead to toxicities which compromise their therapeutic benefits [104]. Some of the off-target
effects could be alleviated by pinpointing chemical modification (e.g., the seed region of
siRNA) [105]. However, ASO is the better choice to be developed as nucleic acid-based
therapeutics for four reasons: (1) lower cost of production as ASOs are single stranded,
(2) in vivo delivery of ASOs is easier than siRNA (ASO delivery does not need a vector
while siRNA delivery needs a carrier) [101], (3) ASOs can not only silence gene expression,
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but also restore gene expression which has been recognized as the most effective strategy
for the treatment of DMD and SMA, (4) novel chemical modification (e.g., MsPA) and
its rational positioning in gapmer-like ASOs lead to the advent of very long-acting next
generation antisense oligomers [78].

1 
 

 

Figure 3. Design of chemically modified ASOs including uniformly modified ASO design, gapmer
design, and mixmer design.

MicroRNAs (miRNAs) are short noncoding endogenous RNAs of 18–22 mer in length
that play important roles in the up- or down-regulation of genes [106]. miRNA-based
therapeutic oligonucleotides can be developed as miRNA mimics or anti-miRNAs (ASOs).
miRNA mimics imitate miRNA functions, while anti-miRNAs bind to miRNAs complemen-
tarily and deactivate their functions through RNase H-mediated degradation or the steric
blockage mechanism [107,108]. Like the chemically modified ASOs targeting mRNAs/pre-
mRNAs, anti-miRNAs are usually composed of nucleotide analogues instead of unmodified
nucleotides to obtain improved nuclease stability and target miRNA-binding affinity. For
example, miRNA-92a is a potential therapeutic target of cardiovascular diseases with CKD
as it mediates endothelial dysfunction in CKD [109]. Hinkel et al. developed an LNA-
modified ASO as an anti-miRNA-92a (named LNA-92a) [110], which efficiently inhibited
miRNA-92a leading to protection against ischemia-reperfusion injury in a pig model. In
addition, long non-coding RNAs (lncRNAs) regulate the effects of miRNAs on mRNA
expression [111]. Some of the lncRNAs have emerged as potential prognostic biomarkers
for CKD progression, such as lncRNAs HCP5, and NOP14-AS1 [112]. Development of
ASOs targeting these lncRNAs could facilitate research aiming at elucidating their roles in
CKD and developing ASO-based therapeutic strategies.

4. Antisense Oligonucleotides Targeting Chronic Kidney Disease

ASO-mediated gene knockdown by specifically reducing the mRNA production of
genes enables the identification and/or verification of disease-relevant genes in CKD,
leading to the expansion of knowledge regarding the molecular basis underlying the
disease, thereby bringing new hope to identifying promising target genes for CKD therapy
aimed at delaying or halting the progressive decline of kidney function. Furthermore,
upon recognition of genes as potential therapeutic targets for CKD, the identified ASO-
based gene inhibitors can directly serve as lead compounds, which speeds up the drug
development process and bypasses the potential difficulties that development of small
molecule-based inhibitors may face, such as the undruggability of target proteins and the
toxicity of small molecules.
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In fact, uniformly PS-modified ASOs and 2′-MOE-PS gapmer-like ASOs have been
developed by different groups to target genes involved in the progression of CKD by
downregulating the expression of those genes through the RNase H mechanism. In this
section, we review the ASO-based research on genes that are relevant to CKD, including
THBS1 (also known as TSP1) that encodes thrombospondin-1 (TSP1), CCN2 (also known
as CTGF) encoding connective tissue growth factor (CTGF), KRAS encoding Kirsten rat
sarcoma viral oncogene homolog (KRAS), MTOR encoding mammalian target of rapamycin
(mTOR), AGT encoding angiotensinogen (AGT), and APOL1 that encodes apolipoprotein
L1 (APOL1). These studies provide new insights into the molecular pathogenesis of CKD
and explore the therapeutic potential of ASO-based gene inhibitors for the targeted therapy
of CKD. In vitro screening of ASO candidates and subsequent in vivo investigations in
these studies are shown in Tables 2 and 3, respectively.

Table 2. In vitro screening of ASOs and the identified best-performing candidates for subsequent
in vitro and/or in vivo studies. Purple asterisks “*” in ASO sequences represent PS modification,
red color represents 2′-MOE modification, blue color represents 2′-4′ constrained ethyl modification,
black color represents deoxyribonucleotide. 2′-MOE: 2′-O-methoxyethyl, PS: Phosphorothioate
internucleotide linkage, PO: Phosphodiester internucleotide linkage.

In Vitro Study (Initial Screen of ASO Candidates) Best-Performing ASO Candidates

Target Gene Chemistry Cellular Target ASO Sequences Ref.

TSP-1 Eleven 14–25 mer DNAPS ASOs Mesangial cell 5′-T*T*C*T*C*C*G*T*T*G*T*G*A*T*T*G*A*A-3′
5′-C*A*C*C*T*C*C*A*A*T*G*A*G*T*T-3′ [113]

CTGF
20 mer 4-12-4

MOEPO-DNAPS-MOEPO and
MOEPS-DNAPS-MOEPS ASOs

Rat mesangial cell line 5′-CCACA*A*G*C*T*G*T*C*C*A*G*T*CTAA-3′
5′-C*C*A*C*A*A*G*C*T*G*T*C*C*A*G*T*C*T*A*A-3′ [114]

KRAS 20 mer 5-10-5
MOEPS-DNAPS-MOEPS ASOs

Rat renal fibroblast
(NRK-49F)

5′-A*T*T*C*A*C*A*T*G*A*C*T*A*T*A*C*A*C*C*T-3′
5′-C*A*C*A*C*T*T*A*T*T*C*C*C*T*A*C*T*A*G*G-3′ [115]

MTOR ~150 20 mer 5-10-5
MOEPS-DNAPS-MOEPS ASOs

Primary murine hepatocytes
(for screening), type 1

Madin-Darby Canine Kidney
cells (for other

in vitro experiments)

5′-T*C*C*A*C*T*T*T*T*C*A*C*A*G*C*A*C*T*G*C-3′ [116]

AGT ~150 20 mer 5-10-5
MOEPS-DNAPS-MOEPS ASOs Primary murine hepatocytes 5′-T*C*T*T*C*C*A*C*C*C*T*G*T*C*A*C*A*G*C*C-3′ [117]

APOL1

Over 4000 16 mer
MOEPS-DNAPS-MOEPS or

2′-4′constrained ethyl
(cEt)PS-DNAPS-cEtPS ASOs

A-431 cell line N/A [118]

Table 3. Representative results of in vivo studies of ASO-mediated silencing of CKD-related genes.

Target Gene In Vivo Studies of ASO Mediated Gene Silencing Ref.

TSP-1

Type of CKD model Animal model

[113]

Induced experimental mesangial proliferative
glomerulonephritis (the anti-Thy1 model) Sprague-Dawley rats (150–200 g)

Therapeutic regimen of ASO

ASOs were transferred into renal glomeruli via left renal artery perfusion. Five days after the administration, kidneys were isolated
for analysis.

Renal function and/or renal damage markers

Inhibited glomerular extracellular matrix accumulation determined by significantly reduced collagen IV positive glomerular area
(%): TSP-1 ASO-treated group (~16%), scrambled ASO-treated group (~31%), p < 0.01.

Markedly reduced mesangial cell activation determined by significantly reduced smooth-muscle-actin positive glomerular area (%):
TSP-1 ASO-treated group (~15%), scrambled ASO-treated group (~39%), p < 0.01.
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Table 3. Cont.

Target Gene In Vivo Studies of ASO Mediated Gene Silencing Ref.

CTGF

Type of CKD model Animal model

[114]

Mice received streptozotocin (STZ) to develop an experimental
model of type 1 diabetes induced diabetic nephropathy, and
db/db mice with naturally developed diabetic nephropathy

C57BL/6 mice

Therapeutic regimen of ASO

Mice with type 1 diabetes: 20 mg/kg (twice a week) for 16 weeks.
db/db mice: 5, 10, 20 mg/kg (twice a week) for 8 weeks

Renal function and/or renal damage markers

Mice with type 1 diabetes:
Reduced kidney hypertrophy determined by reduced ratio (kidney weight/body weight): CTGF ASO-treated group (1.4%),

vehicle-treated group (1.9%), p < 0.02. Attenuated mesangial matrix expansion (a.u.): CTGF ASO-treated group (~1.8),
vehicle-treated group (~3.2), p < 0.05.

Significantly reduced urinary albumin determined by reduced 24 h urinary albumin excretion (urinary albumin/urinary creatinine,
ug/mg): CTGF ASO-treated group (~1.5), vehicle-treated group (~4.0), p < 0.05.

db/db mice:
Matrix expansion (%): 10 mg/kg CTGF ASO-treated group (~60%), vehicle-treated group (~100%), p < 0.05.

Urinary albumin/urinary creatinine (ug/mg): 20 mg/kg CTGF ASO-treated group (~1.2), vehicle-treated group (~2.4), p < 0.05.

KRAS

Type of CKD model Animal model

[115]

Unilateral ureteric obstruction (UUO) model Male Wistar rats

Therapeutic regimen of ASO

12.5 mg/kg for six days (administration was performed on alternate days)

Renal function and/or renal damage markers

Significantly reduced fibrosis determined by reduced fibrosis score (%): KRAS ASO-1-treated group (17%), scrambled ASO-1 (~40%),
p < 0.001; KRAS ASO-2-treated group (20.3%), scrambled ASO-2 (~36%), p < 0.01.

MTOR

Type of CKD model Animal model

[116]

An orthologous model of human autosomal dominant
polycystic kidney disease (ADPKD) caused by a mutation in the

Pkd2 gene
C57BL/6 Pkd2WS25/−mice

Therapeutic regimen of ASO

Intraperitoneal injection at 100 mg/kg/week for the first 4 weeks and 50 mg/kg/week for the remaining 8 weeks

Renal function and/or renal damage markers

Improved kidney function determined by reduced ratio (kidney weight/body weight): MTOR ASO-treated group (1.5%), scrambled
ASO-treated group (2.4%), p < 0.001; and cyst volume density: MTOR ASO-treated group (15.1%), scrambled ASO-treated group

(34.1%), p < 0.01.

AGT

Type of CKD model Animal model

[117]

An orthologous model of human ADPKD caused by a mutation
in the Pkd2 gene C57BL/6 Pkd2WS25/−mice

Therapeutic regimen of ASO

Intraperitoneal injection at 100 mg/kg/week for the first 4 weeks and 50 mg/kg/week for the remaining 8 weeks

Renal function and/or renal damage markers

Improved kidney function determined by reduced ratio (kidney weight/body weight): AGT ASO-treated group (1.5%), scrambled
ASO-treated group (2.4%), p < 0.01; and cyst volume density: AGT ASO-treated group (22%), scrambled ASO-treated group (34.1%),

p < 0.05.

APOL1

Type of CKD model Animal model

[118]

Human APOL1-transgenic mice with induced proteinuria by
IFN-γ challenge Human APOL1-transgenic C57BL/6 mice

Therapeutic regimen of ASO

Intraperitoneal injection at 50 mg/kg/week for four weeks

Renal function and/or renal damage markers

Prevention of IFN-γ induced proteinuria determined by urinary albumin-to-creatinine ratio (ACR) (ug Alb/mg Cre): APOL1
ASO-treated group (0), control ASO-treated group (~1000), p < 0.001.

4.1. Thrombospondin-1 (TSP1)

Renal fibrosis, defined as the pathological accumulation of extracellular matrix, is
the common hallmark of CKD [119]. Transforming growth factor-β (TGF-β), a profibrotic
cytokine, plays a major role in experimental renal disease when TGF-β is overexpressed in
the anti-Thy1 model (induced mesangial proliferative glomerulonephritis in rats) [120,121],
and accumulation of mesangial cell matrix and interstitial fibrosis could be identified in
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transgenic mice expressing active TGF-β1 [122]. Furthermore, in human CKD, the upreg-
ulation of TGF-β is correlated with excess extracellular matrix, providing evidence that
TGF-β plays a vital role in mediating fibrosis [123]. To this end, Akagi et al. directly blocked
TGF-β action in the anti-Thy1 model by the administration of TGF-β-targeting PS-modified
DNA ASOs, which achieved markedly reduced extracellular matrix accumulation [124].
However, TGF-β is not a suitable therapeutic target as it is a pleiotropic cytokine that
exhibits other essential biofunctions in mammals, and TGF-β knockout mice survive for
only a few weeks after birth [125–127].

Thrombospondin-1 (TSP1) is a major activator of TGF-β1 [128–131]. Nevertheless, unlike
the TGF-β null mice, TSP1 knockout mice do not die prematurely and are healthy [130,131].
De novo TSP1 expression in mesangial cells colocalizes with the upregulation of TGF-β1 in
different experimental kidney disease models [132], including the anti-Thy1 model [121,133].
In order to investigate the role of TSP1 as a TGF-β activator in the development of renal
fibrosis, Daniel et al. screened out two PS-modified DNA ASO sequences (an 18 mer
ASO and a 15 mer ASO) from 11 candidates that were designed to inhibit TSP1 expres-
sion [113]. ASOs were selectively transferred to the glomeruli of Sprague-Dawley (SD) rats
with anti-Thy1 antibody-induced mesangial proliferative glomerulonephritis through renal
artery perfusion followed by electroporation. Six days after treatment, TSP1-specific ASOs
achieved the efficient reduction of TSP1 expression by more than 60%, and the inhibition of
active TGF-β secretion by 50%, while not affecting the total expression level of TGF-β [113].
The ASO treatment also led to an evident reduction in the glomerular number of nucleic
positive for the phospho-Smad2/3 (a TGF-β-signaling molecule that is known as a marker
of TGF-β activation), indicating a markedly decreased glomerular TGF-β activity, which
was associated with a marked reduction in mesangial cell activation [113]. Furthermore,
TSP1-targeting ASO therapy inhibited the accumulation of glomerular extracellular matrix
so that extra-domain A of fibronectin was markedly reduced by nearly 96%, as well as
the reduced accumulation of other extracellular matrix proteins such as collagen I and
collagen IV [113]. This study reveals that TSP1 is a tightly regulated activator of TGF-β in
the anti-Thy1 model, and is responsible for the accumulation of glomerular extracellular
matrix by activating TGF-β. Moreover, the data of the study suggests that the ASO-based
TSP1 inhibitor may be a feasible therapeutic for fibrotic renal disease.

4.2. Connective Tissue Growth Factor (CTGF)

Over 30% of ESRD is caused by diabetic nephropathy. Glomerulosclerosis, the patho-
logical hallmark of diabetic nephropathy, is characterized by the extracellular matrix
accumulation of mesangial cells and tubulointerstitial fibrosis [134]. Both in vitro and
in vivo studies have established that TGF-β contributes to glomerulosclerosis and that
overexpression of TGF-β is associated with fibrosis and scarring in response to renal injury
in diabetes [135–139]. However, as mentioned in the previous section, TGF-β is not a
suitable target for drug development due to its multifunctionality. CTGF, a prosclerotic
cytokine overexpressed during diabetes and acting downstream of TGF-β [140], directly
contributes to the accumulation of extracellular matrix and tubulointerstitial fibrosis in
diabetic nephropathy [140–142]. Okada et al. downregulated the expression of CTGF in
tubular epithelium by the intravenous administration of a CTGF-targeting, PS-modified
18 mer DNA ASO in mice with subtotal nephrectomy (SNx) [143]. They found that de-
creased expression of CTGF caused by the ASO is associated with attenuated interstitial
fibrosis resulting from the downregulated expression of genes involved in the expansion of
the glomerular extracellular matrix, demonstrating that CTGF is a direct and significant
contributor of TGF-β-dependent renal fibrogenesis [143]. This study suggested that the
development of an ASO-based CTGF inhibitor may be a promising strategy for antifibrotic
therapy in TGF-β-dependent CKD such as diabetic nephropathy.

Later, Guha et al. investigated the role of CTGF in the progression of diabetic nephropa-
thy by administrating a CTGF-specific 20 mer ASO (either 4-12-4 MOEPO-DNAPS-MOEPO

or 4-12-4 MOEPS-DNAPS-MOEPS gapmer) to nephropathic mice with streptozotocin-induced
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type 1 diabetes and db/db mice (mice with type 2 diabetes) with a dosage of 20 mg/kg
(twice weekly) for 16 weeks and 8 weeks, respectively [114]. The CTGF-targeting ASO-
inhibited hyperglycemia induced overexpression of CTGF in both diabetic mouse models.
In the mice with type 1 diabetes, ASO treatment inhibited a variety of indices of renal
disease, for instance, the development of renal hypertrophy was significantly attenuated
in that the diabetes-induced increase of kidney weight was reduced by 32%, increases of
serum creatinine and urinary albumin which are pathological features of diabetic nephropa-
thy were reduced by 32% and 52%, respectively, and the diabetes-induced expansion of the
mesangial matrix was attenuated by 43%, which was associated with the reduced synthesis
of collagen 1, fibronectin, and TGF-β1 [114]. Furthermore, ASO treatment achieved the
inhibition of profibrotic p38 mitogen-activated protein kinase (MAPK) and its downstream
target transcription factor cAMP-response element binding protein (CREB) so that the acti-
vation of p38 MAPK and CREB was attenuated by 54% and 74%, respectively, indicating
that the progression of diabetic nephropathy may be inhibited [114]. In addition, in the
db/db mice, CTGF-targeting ASO reduced serum creatinine, urinary total protein, and
urinary albumin by 37%, 41%, and 48%, respectively [114]. This study provides sound sci-
entific evidence that the specific knockdown of CTGF by gapmer-like ASO holds significant
promise as a potential therapy for diabetic nephropathy.

4.3. Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS)

Tubulointerstitial fibrosis, characterized by the excessive deposition of extracellular
matrix resulting from an increased number of activated interstitial myofibroblasts, is a key
determinant of progressive CKD [144]. RAS proteins, termed small guanosine triphos-
phatases (GTPases), play essential roles in the regulation of cell survival, proliferation,
and differentiation by acting as signal transduction molecules in various extracellular
pathways [145]. Bechtel et al. demonstrated that the activation of RAS is directly associated
with renal fibrogenesis [146]. Therefore, RAS proteins may be potential therapeutic targets
for the renal fibrosis of CKD [147–154]. Sharpe et al. demonstrated that KRAS is the
predominant isoform of RAS expressed in human renal fibroblasts and that PS or 2′-MOE-
PS-modified ASO-induced KRAS knockdown significantly suppresses the proliferation
of fibroblasts [155,156]. Later, in order to investigate the profibrotic role of KRAS in CKD,
the same group silenced the KRAS expression in rats with unilateral ureteric obstruction
(unilateral ureteric obstruction is considered a model of renal fibrosis and CKD [157]) by
the subcutaneous administration of KRAS-specific 20 mer gapmer-like ASOs (ISIS 104440
or ISIS 104419, 5-10-5 MOEPS-DNAPS-MOEPS design) on alternate days (for six days) at
a dosage of 12.5 mg/kg [115]. Treatment of KRAS-specific ASOs significantly reduced
the level of KRAS mRNA by 61% (ISIS 104440) and 97% (ISIS 104419) compared to their
correspondent scrambled ASOs (negative control), which was associated with reduced
renal fibrosis (fibrosis score was reduced to 17% by ISIS 104440 and 20.3% by ISIS 104419)
and collagen deposition (collagen deposition score was reduced to 18.4% by ISIS 104440
and 17% by ISIS 104419) [115]. Furthermore, the upregulation of α-smooth muscle actin
(α-SMA, a marker of myofibroblast activity) induced by obstructive nephropathy was
inhibited by the KRAS-targeting ASOs so that the α-SMA expression was reduced from
53% (negative control group) to 3.9% and 20% by ISIS 104440 and ISIS 104419, respectively,
indicating that an ASO-mediated KRAS knockdown could prevent the onset of fibrosis in
rat models of unilateral ureteric obstruction [115]. This study suggests that ASO-induced
KRAS inhibition could be a novel antifibrotic strategy for CKD as ASO treatment markedly
inhibited renal fibrosis.

It is worth mentioning that Ross et al. recently evaluated another highly potent KRAS-
specific ASO candidate (AZD4785 or ISIS 651987) for its anti-tumour effects in vitro and
in vivo [158]. We recommend researchers compare the efficacy between AZD4785 and ISIS
104440/ISIS 104419 to identify the best-performing lead candidate for further anti-CKD
therapeutic development.
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4.4. Mammalian Target of Rapamycin (mTOR)

Autosomal dominant polycystic kidney disease (PKD), caused by a mutation in the
PKD1 or PKD2 gene, with 50% of patients developing CKD, accounts for ~5–10% of ESRD in
the US requiring dialysis or renal transplantation [159]. The mTOR signaling pathway plays
a role in the regulation of cell growth and proliferation [160]. Specifically, mTOR complex
1 (mTORC1) controls protein synthesis and cell proliferation, and the hyperactivation of
the mTORC1 signal is a feature of PKD [161–164]. mTOR complex 2 (mTORC2) modulates
cell survival and arrangement of actin cytoskeleton by phosphorylating AGC kinases such
as the pro-survival kinase pAktSer473 [165–167]. Activation of mTORC2 is upregulated
in PKD [162–169]. Sirolimus, an mTORC1 inhibitor, has been demonstrated to have a
therapeutic effect on mice with PKD resulting from Pkd1 inactivation via the reduction of
cyst growth and preservation of renal function [162]. However, sirolimus had no effect on
renal function in Pkd2WS25/−mice (a model of human autosomal dominant PKD resulting
from mutation in the Pkd2 gene) [170], and a clinical study showed that sirolimus treatment
did not halt the growth of polycystic kidneys in humans [171]. One possible reason of
the inefficacy is that sirolimus directly inhibits mTORC1 but not mTORC2, therefore, it is
unable to inhibit mTORC2-dependent Akt-induced proliferation [172].

In order to determine the therapeutic effect of the combined inhibition of mTORC1 and
mTORC2 on PKD, Ravichandran et al. developed an mTOR-specific 20 mer gapmer-like
ASO (5-10-5 MOEPS-DNAPS-MOEPS design) through the screening of ∼150 ASO candi-
dates [116], as mTOR exists in both mTORC1 and mTORC2 [173]. ASOs were administered
into Pkd2WS25/− mice via intraperitoneal injections at a sequential two-stage dosage
of 100 mg/kg/week (first 4 weeks) and 50 mg/kg/week (the remaining 8 weeks) [116].
Treatment of mTOR ASO led to a significant reduction in the expression levels of mTOR,
pS6 (a marker of mTORC1 signaling), and pAktSer473 [116], which was associated with the
reduced ratio of two kidneys/total body weight from 2.4% (control ASO group) to 1.5%
(mTOR ASO group), significantly decreased cyst volume density from 34.1% (control ASO
group) to 15.1% (mTOR ASO group), and significantly reduced blood urea nitrogen from
43.4 mg/dL (control ASO group) to 29 mg/dL (mTOR ASO group) [116], indicating an
ASO-induced melioration of PKD and normalization of renal function. Furthermore, mTOR
ASO treatment significantly inhibited both the proliferation and apoptosis of tubular epithe-
lial cells (proliferation and apoptosis of epithelial cells lining the renal tubular plays a key
role in cyst growth [174]) so that the number of proliferating cell nuclear antigen positive
cells was reduced from 1.9 per cyst (control ASO group) to 0.8 per cyst (mTOR ASO group),
and the number of apoptotic cells was reduced from 3.6 per non-cystic tubule (control ASO
group) to 1.2 per non-cystic tubule (mTOR ASO group) [116], suggesting that ASO therapy
could inhibit cyst growth. This study demonstrated that the combined inhibition of both
mTORC1 and mTORC2 holds therapeutic potential for autosomal dominant PKD [116],
and an ASO-based mTOR inhibitor can be a promising approach for treating the disease
owing to its capability of combined mTORC1/2 knockdown.

4.5. Angiotensinogen (AGT)

Enlargement of renal cysts in autosomal dominant PKD is associated with the activa-
tion of the renin–angiotensin system and the resultant production of proinflammatory and
profibrotic angiotensin II [175–177], which contributes to cystogenesis by the induction of
cellular proliferation, inflammation, and fibrosis [175,178]. The renin–angiotensin system
also plays an important role in type IV cardiorenal syndrome and CKD [179]. Angiotensin II
induces the differentiation of renal fibroblasts into myofibroblasts and stimulates the expres-
sion and activation of TGF-β [180,181]. Angiotensin II leads to renal damage by increasing
the expression of proinflammatory cytokines and chemokines and renal leukocyte infiltra-
tion [182]. Despite the importance of the renin–angiotensin system in the pathogenesis of
PKD, the single or combined use of renin–angiotensin system inhibitors, including ACEis,
ARBs, and renin inhibitor, have limited efficacy and induce side effects [54,55]. Identifica-
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tion of other targets within the renin–angiotensin system may result in the development of
more efficient therapeutics.

Angiotensinogen (AGT) is a substrate of the peptidase renin in the renin–angiotensin
system, and AGT is cleaved by renin forming angiotensin I, which is then converted to
angiotensin II by ACE [181]. In order to investigate the potential therapeutic effects of
direct AGT inhibition on PKD, Ravichandran et al. developed an AGT-specific 20 mer
gapmer-like ASO (5-10-5 MOEPS-DNAPS-MOEPS design) through the screening of ∼150
ASO candidates [117]. The administration of ASO was performed by intraperitoneal in-
jections into Pkd2WS25/− mice at a sequential two-stage dosage of 100 mg/kg/week
(first 4 weeks) and 50 mg/kg/week (the remaining 8 weeks) [117]. AGT-specific ASO
treatment significantly reduced the AGT expression, which was associated with a reduced
two kidney/total body weight ratio (AGT ASO group: 1.5%, control ASO group: 2.4%), de-
creased cyst volume density (AGT ASO group: 22%, control ASO group: 34.1%) and blood
urea nitrogen (AGT ASO group: 34 mg/dL, control ASO group: 47 mg/dL), indicating
that AGT-specific ASO treatment could lead to decreased PKD and normalization of renal
function [117]. Furthermore, significant decreases in proinflammatory cytokines including
C-X-C motif chemokine ligand 1 (CXCL1), interleukin 12 (IL-12), and the profibrotic TGF-β
were observed in the AGT ASO treatment groups (CXCL1: 0.6 pg/mg, IL-12: 8.8 pg/mg,
TGF-β: 32 pg/mg) in contrast to the control ASO treatment groups (CXCL1: 3.4 pg/mg,
IL-12: 37.3 pg/mg, TGF-β: 102 pg/mg), indicating that AGT-specific ASO treatment could
lead to decreased proinflammatory and profibrotic molecules [117]. Although further in-
vestigation is required to elucidate the mechanism underlying the ASO-induced inhibition
on cyst growth, chronic AGT inhibition by ASO may be a possible therapeutic strategy for
autosomal dominant PKD in the future.

4.6. Apolipoprotein L1 (APOL1)

APOL1 is a newly evolved gene that is only present in a few primates such as humans,
baboons, and gorillas [183,184]. The APOL1 protein functions as the trypanolytic factor
in serum that lyses trypanosomes against African trypanosomiasis (sleeping sickness), a
disease endemic to Africa [185–187]. One of the trypanosome species, Trypanosoma brucei
rhodesiense, has evolved to resist the wild type APOL1 (G0), while the G1 and G2 mutants
of APOL1 (commonly found in populations of African ancestry), discovered in 2010, over-
come the resistance of Trypanosoma brucei rhodesiense [188]. However, mutant APOL1
also leads to toxic gain of function when overexpressed so that [189,190], compared to the
wild type APOL1 (G0), the G1/G2 mutants are associated with an increased risk of CKD
by 7- to 30-fold [188,191–193]. Furthermore, these mutants accelerate the GFR decline, and
thus the progression of CKD [192,194]. In addition, G1/G2 mutants are strongly associated
with various forms of nondiabetic nephropathy such as focal segmental glomerulosclerosis
(FSGS) and interferon (IFN) therapy-related collapsing glomerulopathy [188,189,192]. As
APOL1 is not essential for kidney development and function [183,195–197], reducing the
expression level of APOL1 therapeutically will not result in any harmful effects other than
increased susceptibility to African sleeping sickness in specific geographical regions [118].
Therefore, in an attempt to study APOL1 systemically and achieve proof of concept for
APOL1 inhibition by antisense oligomer, Aghajan et al. established a transgenic mouse
model for APOL1-related CKD (C57BL/6 mice with human APOL1 G1 mutant gene were
challenged by IFN-γ leading to induced proteinuria in mice), developed a APOL1 specific,
2′-MOE or 2′-4′ constrained ethyl (cEt)-modified 16 mer gapmer ASO on a PS backbone
(IONIS-APOL1Rx) through the screening of over 4000 ASO candidates, and treated APOL1
G1 transgenic mice with IONIS-APOL1Rx at a weekly dose of 50 mg/kg for four weeks
prior to IFN-γ challenge [118]. ASO treatment led to a significant decrease in the APOL1
mRNA levels in both the kidney (by ~50%–60%) and liver (by 95%), which completely
prevented the occurrence of IFN-γ-triggered proteinuria, indicating that the CKD-relevant
cell types (podocytes, endothelial cells, and mesangial cells that constitute the renal filtra-
tion barrier) are sensitive to ASO treatment [118]. It was also found that administration of
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IONIS-APOL1Rx at a weekly dosage as low as 6.25 mg/kg led to the significant inhibition
of induced proteinuria, demonstrating the potency of ASO therapy and the renoprotective
effect that it provided [118]. Although further study is definitely required to reveal the
pathogenesis of the toxic gain of function resulting from mutant APOL1, IONIS-APOL1Rx
holds promise to be developed as an efficient anti-CKD therapeutic option for patients with
APOL1 nephropathies.

5. Potential Problems of ASO-Based CKD Therapy and Possible Solutions

The efficient delivery of therapeutic ASOs to their target tissues remains a major
challenge. Although all FDA-approved ASO drugs are administered directly by injection,
intense research efforts have yielded different strategies aimed at improving the in vivo
delivery of ASOs, such as nanocarriers, viral delivery, nanoparticles, antibodies, and
aptamers. The advancement in the delivery methods of therapeutic oligonucleotides has
been discussed in a number of recent reviews [198–202].

The ASO-mediated knockdown of CKD relevant gene expression may lead to severe
adverse effects due to the multifunctionality of target genes. For example, although TGF-β
inhibition could suppress progression to glomerulosclerosis [123], TGF-β knockout could
be deadly due to its essential roles in multiple developmental processes [124–126]. Possible
solutions include:

(1) Exploration of target genes that are located upstream or downstream of TGF-β path-
way, such as TSP1 (upstream) [113] and CTGF (downstream) [114].

(2) Exploration of target genes that are newly evolved or less conserved, such as APOL1 [118],
so that inhibition of such genes is probably less risky compared with the genes that
are functionally conserved.

(3) Identification of causative genes for diabetes and hypertension as these diseases are
the leading causes of CKD; ASO-based targeted therapies may prevent the induction
of CKD [8,26,28,203].

(4) Investigation of AKI-related biomarkers such as neutrophil gelatinase-associated
lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) [204,205], since these biomark-
ers could be potential therapeutic targets that could be involved in the AKI-to-
CKD transition.

Off-target effects of ASO that are either sequence dependent or independent may
result in in vivo toxicity. Possible solutions include: (1) extending the length of ASO from
15 mer to ~25–30 mer, thus increasing its specificity and reducing potential hybridization
between ASO and non-target RNAs; (2) employment of nucleotide analogues of improved
safety profile, such as PMO to reduce the sequence independent toxicity of ASO. One
example of this solution is the rejection of drisapersen (2′-OMe-PS modified ASO, BioMarin
Pharmaceutical) due to life-threatening toxicity and the approval of eteplirsen (PMO
modified ASO, Sarepta Therapeutics) by the FDA in 2016 (both drisapersen and eteplirsen
are DMD mRNA exon-51-targeting drugs) [56].

6. Conclusions

Patients with CKD progressed to ESRD require expensive dialysis or kidney trans-
plantation; however, current CKD therapy relying largely on the use of renin–angiotensin
system inhibitors, such as ACEis and ARBs, does not halt the progression of CKD. Therefore,
the development of new therapies with an improved potency and safety profile is urgently
needed. Chemically modified ASOs have been used in the functional study of genes in-
volved in the pathogenesis of CKD and the subsequent or coinstantaneous development of
ASO-based inhibitors of the target genes. Compared with conventional small molecule-
based protein inhibitors, ASOs possess an advantage due to their capability of inducing
direct targeted mRNA degradation, bypassing potential obstacles facing “undruggable”
proteins. As a result, a few ASO-based inhibitors of genes responsible for the pathogenesis
of CKD have been developed. It is recommended that the antifibrotic effects of these ASOs
in the heart should also be investigated since cardiac and renal dysfunction share common
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mechanisms. Furthermore, efforts have been made in the identification of novel therapeutic
targets (other than the ACE and AR) within or beyond the renin–angiotensin system. Given
the convenience and flexibility of developing an ASO-based inhibitor of a specific gene,
there is no doubt that more CKD-relevant genes will be identified as potential therapeutic
targets, which may lead to the development and approval of antisense anti-CKD drugs in
the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/kidneydial2010004/s1, Table S1: Results of clinical investigations of FDA-approved ASOs.
Figure S1: The relationship between ASO design and the mechanism of action of ASOs.
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