2,412 research outputs found

    Lifetime statistics of quantum chaos studied by a multiscale analysis

    Get PDF
    In a series of pump and probe experiments, we study the lifetime statistics of a quantum chaotic resonator when the number of open channels is greater than one. Our design embeds a stadium billiard into a two dimensional photonic crystal realized on a Silicon-on-insulator substrate. We calculate resonances through a multiscale procedure that combines graph theory, energy landscape analysis and wavelet transforms. Experimental data is found to follow the universal predictions arising from random matrix theory with an excellent level of agreement.Comment: 4 pages, 6 figure

    NP-hardness of the cluster minimization problem revisited

    Full text link
    The computational complexity of the "cluster minimization problem" is revisited [L. T. Wille and J. Vennik, J. Phys. A 18, L419 (1985)]. It is argued that the original NP-hardness proof does not apply to pairwise potentials of physical interest, such as those that depend on the geometric distance between the particles. A geometric analog of the original problem is formulated, and a new proof for such potentials is provided by polynomial time transformation from the independent set problem for unit disk graphs. Limitations of this formulation are pointed out, and new subproblems that bear more direct consequences to the numerical study of clusters are suggested.Comment: 8 pages, 2 figures, accepted to J. Phys. A: Math. and Ge

    Energy Landscape and Global Optimization for a Frustrated Model Protein

    Get PDF
    The three-color (BLN) 69-residue model protein was designed to exhibit frustrated folding. We investigate the energy landscape of this protein using disconnectivity graphs and compare it to a Go model, which is designed to reduce the frustration by removing all non-native attractive interactions. Finding the global minimum on a frustrated energy landscape is a good test of global optimization techniques, and we present calculations evaluating the performance of basin-hopping and genetic algorithms for this system.Comparisons are made with the widely studied 46-residue BLN protein.We show that the energy landscape of the 69-residue BLN protein contains several deep funnels, each of which corresponds to a different β-barrel structure

    Energy landscapes and persistent minima.

    Get PDF
    We consider a coarse-graining of high-dimensional potential energy landscapes based upon persistences, which correspond to lowest barrier heights to lower-energy minima. Persistences can be calculated efficiently for local minima in kinetic transition networks that are based on stationary points of the prevailing energy landscape. The networks studied here represent peptides, proteins, nucleic acids, an atomic cluster, and a glassy system. Minima with high persistence values are likely to represent some form of alternative structural morphology, which, if appreciably populated at the prevailing temperature, could compete with the global minimum (defined as infinitely persistent). Threshold values on persistences (and in some cases equilibrium occupation probabilities) have therefore been used in this work to select subsets of minima, which were then analysed to see how well they can represent features of the full network. Simplified disconnectivity graphs showing only the selected minima can convey the funnelling (including any multiple-funnel) characteristics of the corresponding full graphs. The effect of the choice of persistence threshold on the reduced disconnectivity graphs was considered for a system with a hierarchical, glassy landscape. Sets of persistent minima were also found to be useful in comparing networks for the same system sampled under different conditions, using minimum oriented spanning forests.D.J.W and J.M.C gratefully acknowledge funding from the European Research Council [267369].This is the author accepted manuscript. The final version is available at http://scitation.aip.org/content/aip/journal/jcp/144/5/10.1063/1.4941052

    Group Leaders Optimization Algorithm

    Full text link
    We present a new global optimization algorithm in which the influence of the leaders in social groups is used as an inspiration for the evolutionary technique which is designed into a group architecture. To demonstrate the efficiency of the method, a standard suite of single and multidimensional optimization functions along with the energies and the geometric structures of Lennard-Jones clusters are given as well as the application of the algorithm on quantum circuit design problems. We show that as an improvement over previous methods, the algorithm scales as N^2.5 for the Lennard-Jones clusters of N-particles. In addition, an efficient circuit design is shown for two qubit Grover search algorithm which is a quantum algorithm providing quadratic speed-up over the classical counterpart

    Stress release mechanisms for Cu on Pd(111) in the submonolayer and monolayer regimes

    Get PDF
    We study the strain relaxation mechanisms of Cu on Pd(111) up to the monolayer regime using two different computational methodologies, basin-hopping global optimization and energy minimization with a repulsive bias potential. Our numerical results are consistent with experimentally observed layer-by-layer growth mode. However, we find that the structure of the Cu layer is not fully pseudomorphic even at low coverages. Instead, the Cu adsorbates forms fcc and hcp stacking domains, separated by partial misfit dislocations. We also estimate the minimum energy path and energy barriers for transitions from the ideal epitaxial state to the fcc-hcp domain pattern.Comment: 4 pages, 4 figure

    Library subject guides: A content management case study at the Open University, UK

    Get PDF
    A summary of multi-format subject guide production at the Open University Library is provided to justify the decision to develop a new system for their production using a commercial CM system. A detailed consideration of the design and implementation stages is given before a critical review of the project outcome.\ud \u

    Relationships Between the Nutrient Content of Irrigated Pasture on Offer and that Selected by Grazing Dairy Cows

    Get PDF
    An experiment was conducted to determine the dry matter, energy, crude protein and fibre intake by dairy cows in late lactation when grazing perennial pasture offered at allocations of 15, 20, 30 and 40 kg DM/cow.day. The cows consistently selected a diet 10% higher in digestibility than that on offer. In contrast, cows selected diets with crude protein levels increasing from 22% to 40%, above that in pasture on offer, as pasture allocation increased. A similar pattern was observed for the intake of white clover (Trifolium repens L). The increase in the concentration of crude protein in the diet (as allocation increased) was due to the consumption of white clover and a decrease in the consumption of the dead components of the sward. On the other hand, the neutral detergent fibre content of the diet selected was lower than that on offer, and declined as pasture allocation increased
    corecore