4,380 research outputs found

    No new limit on the size distribution of gamma-ray bursts

    Get PDF
    The results of a study (Carter et. al.) of gamma ray bursts using long duration balloon exposure are analyzed. Arguments are presented against the conclusion that the size spectrum extrapolates to a power law with index from -1.0 to -0.5, and that therefore the gamma ray bursts are of galactic origin. It is claimed that the data are consistent with an upper limit over 100 times that proposed, and that therefore no conclusion can be drawn from the measurements regarding the nature or origin of gamma ray bursts. The resulting upper limit to the rate of occurrence of small bursts lies above the -1.5 index power law extrapolation of the size spectrum of known events, i.e., greater than the rate expected from an infinitely extended source region

    Helios-2 Vela-Ariel-5 gamma-ray burst source position

    Get PDF
    The gamma-ray burst of 28 January 1976, one of 18 events thus far detected in interplanetary space with Helios-2, was also observed with the Vela-5A, -6A and the Ariel-5 satellites. A small source field is obtained from the intersection of the region derived from the observed time delays between Helios-2 and Vela-5A and -6A with the source region independently found with the Ariel-5 X-ray detector. This area contains neither any steady X-ray source as scanned by HEAO-A nor any previously catalogued X-ray, radio or infrared sources, X-ray transients, quasars, seyferts, globular clusters, flare stars, pulsars, white dwarfs or high energy gamma-ray sources. The region is however, within the source field of a gamma-ray transient observed in 1974, which exhibited nuclear gamma-ray line structure

    Type A GABA-receptor-dependent synaptic transmission sculpts dendritic arbor structure in Xenopus tadpoles in vivo.

    Get PDF
    The emergence of dendritic arbor structure in vivo depends on synaptic inputs. We tested whether inhibitory GABAergic synaptic transmission regulates Xenopus optic tectal cell dendritic arbor development in vivo by expressing a peptide corresponding to an intracellular loop (ICL) of the γ2 subunit of GABAAR which is required to anchor GABAA receptors to the postsynaptic scaffold. GFP-tagged ICL (EGFP-ICL) was distributed in a punctate pattern at putative inhibitory synapses, identified by VGAT-immunoreactive puncta. ICL expression completely blocked GABAAR - mediated transmission in 36% of transfected neurons and significantly reduced GABAAR - mediated synaptic currents relative to AMPAR-mediated synaptic currents in the remaining transfected neurons without altering release probability or neuronal excitability. Further analysis of ICL-expressing neurons with residual GABAAR- mediated inputs showed that the capacity of benzodiazepine to enhance GABAergic synaptic responses was reduced in ICL-expressing neurons, indicating that they were likely depleted of γ2 subunit-containing GABAAR. Neurons expressing a mutant form of ICL were comparable to controls. In vivo time-lapse images showed that ICL-expressing neurons have more sparsely branched dendritic arbors which expand over larger neuropil areas than EGFP-expressing control neurons. Analysis of branch dynamics indicated that ICL expression affected arbor growth by reducing rates of branch addition. Furthermore, we found that decreasing GABAergic synaptic transmission with ICL expression blocked visual experience dependent dendritic arbor structural plasticity. Our findings establish an essential role for inhibitory GABAergic synaptic transmission in the regulation of dendritic structural plasticity in Xenopus in vivo

    Co-expression of Argonaute2 Enhances Short Hairpin RNA-induced RNA Interference in Xenopus CNS Neurons In Vivo

    Get PDF
    RNA interference (RNAi) is an evolutionarily conserved mechanism for sequence-specific gene silencing. Recent advances in our understanding of RNAi machinery make it possible to reduce protein expression by introducing short hairpin RNA (shRNA) into cells of many systems, however, the efficacy of RNAi-mediated protein knockdown can be quite variable, especially in intact animals, and this limits its application. We built adaptable molecular tools, pSilencer (pSi) and pReporter (pRe) constructs, to evaluate the impact of different promoters, shRNA structures and overexpression of Ago2, the key enzyme in the RNA-induced silencing complex, on the efficiency of RNAi. The magnitude of RNAi knockdown was evaluated in cultured cells and intact animals by comparing fluorescence intensity levels of GFP, the RNAi target, relative to mCherry, which was not targeted. Co-expression of human Ago2 with shRNA significantly enhanced efficiency of GFP knockdown in cell lines and in neurons of intact Xenopus tadpoles. Human H1- and U6-promotors alone or the U6-promotor with an enhancer element were equally effective at driving GFP knockdown. shRNA derived from the microRNA-30 design (shRNAmir30) enhanced the efficiency of GFP knockdown. Expressing pSi containing Ago2 with shRNA increased knockdown efficiency of an endogenous neuronal protein, the GluR2 subunit of the AMPA receptor, functionally accessed by recording AMPA receptor-mediated spontaneous synaptic currents in Xenopus CNS neurons. Our data suggest that co-expression of Ago2 and shRNA is a simple method to enhance RNAi in intact animals. While morpholino antisense knockdown is effective in Xenopus and Zebrafish, a principle advantage of the RNAi method is the possibility of spatial and temporal control of protein knockdown by use of cell type specific and regulatable pol II promoters to drive shRNA and Ago2. This should extend the application of RNAi to study gene function of intact brain circuits

    The gamma-ray spectrum of Centaurus A: A high-resolution observation between 70 keV and 8 MeV

    Get PDF
    The NASA/Goddard Space Flight Center Low Energy Gamma ray Spectrometer (LEGS) observed the nearby active nucleus galaxy Centaurus A (NGC 5128) during a balloon flight on 1981 November 19. There is no evidence of a break in the spectrum or of any line features. The 1.6 MeV limit is a factor of 8 lower than the 1974 line flux, indicating that, if the 1974 feature was real, and, if it was narrow, then the line intensity decreased significantly between 1974 and 1981. The lack of observed annihilation radiation from Cen A, combined with the temporal variations that are seen in the X-ray and gamma-ray intensities, constrain the size of the emission region to be between 10 to the 13th power and 5 x 10 to the 17th power cm

    Gamma-ray burst spectroscopy capabilities of the BATSE/GRO experiment

    Get PDF
    A scintillation spectrometer is included in each of the eight BATSE/GRO detector modules, resulting in all-sky coverage for gamma-ray bursts. The scientific motivation, design and capabilities of these spectrometers for performing spectral observations over a wide range of gamma-ray energies and burst intensities are described

    Signatures of Baryogenesis in the MSSM

    Full text link
    We revisit the electroweak baryogenesis within the context of the minimal supersymmetric standard model (MSSM), studying its potential collider signatures. We find that this mechanism of baryogenesis does not give a new CP violating signal at the BB-factories. The first circumstantial evidence may come from enhanced BsB_s or BdB_d mixing. If a light right-handed scalar top and Higgs are found as required, a linear collider represents the best possibility for confirming the scenario.Comment: 5 pages, 2 figures. Minor typos fixed. Reference Adde

    Burst and Transient Source Experiment (BATSE) for the Gamma Ray Observatory (GRO)

    Get PDF
    The Burst and Transient Source Experiment (BATSE) on the Gamma Ray Observatory (GRO) is expected to provide new and better observational data on bursts to test current and future models of burst sources. These data will include: (1) the celestial distribution of hundreds of burst sources over the life of the mission, (2) burst locations within several degrees, within 2 days after their occurrence, (3) observations of weaker bursts and better observations of short timescale fluctuations and spectral variations, (4) observations by a single experiment over a much larger energy range than previously available, and (5) more sensitive measurements of the spectral features which have been observed in many bursts. This paper briefly describes the GRO mission, the BATSE instrumentation and the burst observational capabilities

    Cosmic Parallax in Ellipsoidal Universe

    Full text link
    The detection of a time variation of the angle between two distant sources would reveal an anisotropic expansion of the Universe. We study this effect of "cosmic parallax" within the "ellipsoidal universe" model, namely a particular homogeneous anisotropic cosmological model of Bianchi type I, whose attractive feature is the potentiality to account for the observed lack of power of the large-scale cosmic microwave background anisotropy. The preferred direction in the sky, singled out by the axis of symmetry inherent to planar symmetry of ellipsoidal universe, could in principle be constrained by future cosmic parallax data. However, that will be a real possibility if and when the experimental accuracy will be enhanced at least by two orders of magnitude.Comment: 9 pages, 2 figures, 1 table. Revised version to match published version. References adde
    corecore