13 research outputs found

    Исследование неустойчивости Тейлора-Гертлера в струях с помощью кинетического подхода

    Get PDF
    The aim of the paper is to study the unstable processes in free supersonic unstable jet flows. The direct method of solving a kinetic equation is used. For numerical solution the finitedifferent schemes are applied. To perform parallel computations a supercomputer MVS-100K is used. The maximum number of processors was 480. A mechanism of instability for a supercritical regime for 3D flows is investigated. Solutions of these problems are made for flows in a wide range of Knudsen number Kn with different aspect ratio of the orifice (square and rectangular forms). Mach number Ma = 1.4 and a ratio of pressure in the orifice and the background pressure np = 3.16. Comparison with results of known experiments is made. In calculations we have observed that for a subcritical regime with the large Knudsen numbers (small Reynolds numbers) a vorticity of the flow fields in the cross sections is equal zero. For supercritical regimes a system of streamwise pair vortices is obtained. That corresponds to theoretical and experimental data. The paper studies such a system of the Taylor-Görtler vortices in different cross-sections in an initial region of a jet. It presents results of numerous computations. When modeling a roughness in the nozzle orifice it has been found that the character of instability with disturbance of the symmetry in the cross-sections downstream is complicated. Based on direct method to solve the kinetic equation the paper, for the first time, studies in detail the character of 3D instability.Previously, these problems were solved by continuum methods and also for some variants of flows was used the Direct Simulation Monte Carlo method. A potential field of application of the given results is theoretical and experimental investigations with more detailed, in comparison with previous studies, description of unstable supersonic flows, which show the similar features of the Taylor-Görtler instability. Based on conducted study the paper comes to conclusion that the direct methods of the kinetic approach allow us to describe appropriately a mechanism of the transition to the unstable flows in supersonic jets. We believe that a further study will make it possible to show up the characteristics of turbulence in free supersonic jets.С помощью прямого метода решения S-модельного кинетического уравнения Больцмана численно исследуются течения в сверхзвуковых нерасчетных струях. Алгоритм ре-шения основан на явно-неявной схеме и для повышения эффективности распараллелен с помощью MPI (Message Passing Interface). Расчеты выполнены на суперкомпьютере MVS-100K. Изучается влияние геометрии отверстия и степени разреженности газа на механизм возникновения неустойчивости Тейлора-Гёртлера. Показано, что для течений при больших числах Кнудсена (малых числах Рейнольдса) неустойчивость не возникает. При переходе к закритическим режимам (малые числа Кнудсена) в поле течения возникает система продольных вихрей, соответствующая неустойчивости Тейлора-Гёртлера, что согласуется с теоретическим и опытным данными. Кроме того, при наличии дополнительного возмущающего фактора - шероховатости по периметру отверстия, обнаружена потеря поперечной симметрии струи вниз по потоку. DOI: 10.7463/mathm.0116.083362

    Artificial Intelligence and Machine Learning for Systems Analysis of the 21st Century

    Get PDF
    This paper overviews research being done at IIASA with use of machine learning (ML) methods. We elaborate on promising areas of application and advantages and challenges of using ML. These reflections are done as a part of strategic planning process going on at IIASA at the moment, which aims to come up with a new research strategy for 2021-2030, as well as a supporting research plan. It has been recognized that while applications of ML in commercial sector are numerous and become more and more powerful day to day, it is not yet so common to use ML for creating societal impact. To explore the opportunities in this context and to reflect on what IIASA’s role might be, an internal working group was initiated. This paper emerged from the internal workshop held by the working group at IIASA on June 24, 2019; the workshop invited all IIASA scientists to contribute. The workshop program can be found in Appendix A to this paper

    A Global Network of Science and Technology Advice in Foreign Ministries

    Get PDF
    This paper is a product of the International Dialogue on Science and Technology Advice in Foreign Ministries (Vienna Dialogue) in October 2016, involving more than twenty nations and several international organisations. The event was a key step to further develop the Foreign Minister Science and Technology Advisor Network (FMSTAN), growing from an initial group of five nations. The Vienna Dialogue was convened by the Fletcher School of Law and Diplomacy, Tufts University, and the International Institute for Applied Systems Analysis (IIASA) at the Vienna headquarters of IIASA, bringing together diplomats from foreign ministries to consider the value of evidence for informed decision-making by nations with regard to issues, impacts and resources within, across and beyond national boundaries. The evidence comes from the natural and social sciences with engineering and medicine as well as other areas of technology. By building common interests among nations, science is a tool of diplomacy, promoting cooperation and preventing conflict in our world. Science diplomacy was discussed as an international, interdisciplinary and inclusive process to help balance national interests and common interests in view of urgencies today and across generations in our globally-interconnected civilization

    Kinetic Approach-based Investigation of TaylorGörtler Instability in Jets

    No full text
    The aim of the paper is to study the unstable processes in free supersonic unstable jet flows. The direct method of solving a kinetic equation is used. For numerical solution the finitedifferent schemes are applied. To perform parallel computations a supercomputer MVS-100K is used. The maximum number of processors was 480. A mechanism of instability for a supercritical regime for 3D flows is investigated. Solutions of these problems are made for flows in a wide range of Knudsen number Kn with different aspect ratio of the orifice (square and rectangular forms). Mach number Ma = 1.4 and a ratio of pressure in the orifice and the background pressure np = 3.16. Comparison with results of known experiments is made. In calculations we have observed that for a subcritical regime with the large Knudsen numbers (small Reynolds numbers) a vorticity of the flow fields in the cross sections is equal zero. For supercritical regimes a system of streamwise pair vortices is obtained. That corresponds to theoretical and experimental data. The paper studies such a system of the Taylor-Görtler vortices in different cross-sections in an initial region of a jet. It presents results of numerous computations. When modeling a roughness in the nozzle orifice it has been found that the character of instability with disturbance of the symmetry in the cross-sections downstream is complicated. Based on direct method to solve the kinetic equation the paper, for the first time, studies in detail the character of 3D instability.Previously, these problems were solved by continuum methods and also for some variants of flows was used the Direct Simulation Monte Carlo method. A potential field of application of the given results is theoretical and experimental investigations with more detailed, in comparison with previous studies, description of unstable supersonic flows, which show the similar features of the Taylor-Görtler instability. Based on conducted study the paper comes to conclusion that the direct methods of the kinetic approach allow us to describe appropriately a mechanism of the transition to the unstable flows in supersonic jets. We believe that a further study will make it possible to show up the characteristics of turbulence in free supersonic jets

    Robust Food–Energy–Water–Environmental Security Management: Stochastic Quasigradient Procedure for Linkage of Distributed Optimization Models under Asymmetric Information and Uncertainty

    No full text
    The paper presents a consistent algorithm for regional and sectoral distributed models’ linkage and optimization under asymmetric information based on iterative stochastic quasigradient (SQG) solution procedure of, in general, nonsmooth nondifferentiable optimization. The procedure is used for linking individual sectoral and regional models for integrated and interdependent Food–Energy–Water–Environmental security analysis and management

    Robust management of systemic risks and food-water-energy-environmental security in interacting natural and anthropogenic systems

    No full text
    In the presentation we discuss critical issues related to the design of resilient and robust food, water, energy, environmental systems in the presence of interdependent systemic risks. We introduce the notions of systemic risks, security, resilience and robustness in FWEE systems. We emphasize the need for the two-stage preventive-adaptive stochastic optimization (STO) approaches enabling to design a robust portfolio of precautionary strategic and operational adaptive decisions making the interdependent systems flexible and robust with respect to risks of all kinds. We establish a connection between the robust quantile-based nonsmooth estimation problem in statistics and the two-stage nonsmooth STO problem of robust strategic-adaptive decision making. The coexistence of complementary strategic ex-ante and adaptive ex-post decisions induces systemic risk aversion in the form of Value-at-Risk quantile-based risk constraints. Using examples from research studies on integrated management of catastrophic dependent risks, integrated agricultural-water-energy nexus security, multidisciplinary water resource management we argue that coping with systemic risks can be addressed by solving a system of implicit probabilistic security equations. Selected numerical results from the studies illustrate that a robust combination of interdependent strategic and adaptive solutions presents qualitatively new policy recommendations contributing to the overall welfare increase
    corecore