83 research outputs found

    VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles

    Get PDF
    In simple epithelial cells, apical and basolateral proteins are sorted into separate vesicular carriers before delivery to the appropriate plasma membrane domains. To dissect the putative sorting machinery, we have solubilized Golgi-derived transport vesicles with the detergent CHAPS and shown that an apical marker, influenza haemagglutinin (HA), formed a large complex together with several integral membrane proteins. Remarkably, a similar set of CHAPS-insoluble proteins was found after solubilization of a total cellular membrane fraction. This allowed the cloning of a cDNA encoding one protein of this complex, VIP21 (Vesicular Integral-membrane Protein of 21 kD). The transiently expressed protein appeared on the Golgi-apparatus, the plasma membrane and vesicular structures. We propose that VIP21 is a component of the molecular machinery of vesicular transport

    Preservation of Genes Involved in Sterol Metabolism in Cholesterol Auxotrophs: Facts and Hypotheses

    Get PDF
    Background: It is known that primary sequences of enzymes involved in sterol biosynthesis are well conserved in organisms that produce sterols de novo. However, we provide evidence for a preservation of the corresponding genes in two animals unable to synthesize cholesterol (auxotrophs): Drosophila melanogaster and Caenorhabditis elegans. Principal Findings: We have been able to detect bona fide orthologs of several ERG genes in both organisms using a series of complementary approaches. We have detected strong sequence divergence between the orthologs of the nematode and of the fruitfly; they are also very divergent with respect to the orthologs in organisms able to synthesize sterols de novo (prototrophs). Interestingly, the orthologs in both the nematode and the fruitfly are still under selective pressure. It is possible that these genes, which are not involved in cholesterol synthesis anymore, have been recruited to perform different new functions. We propose a more parsimonious way to explain their accelerated evolution and subsequent stabilization. The products of ERG genes in prototrophs might be involved in several biological roles, in addition to sterol synthesis. In the case of the nematode and the fruitfly, the relevant genes would have lost their ancestral function in cholesterogenesis but would have retained the other function(s), which keep them under pressure. Conclusions: By exploiting microarray data we have noticed a strong expressional correlation between the orthologs of ERG24 and ERG25 in D. melanogaster and genes encoding factors involved in intracellular protein trafficking and folding an

    Long-chain O-ascarosyl-alkanediols are constitutive components of Caenorhabditis elegans but do not induce dauer larva formation.

    No full text
    Two long-chain ascarosides, O-ascarosylnonacosane-2,28-diol and O-ascarosyluntriacontane-2,30-diol, were isolated from Caenorhabditis elegans and detected in all developmental stages of the worm. The long-chain ascarosides were shown to be minor lipid components, and it was also shown that they do not induce dauer larva formation

    The glyoxylate shunt is essential for desiccation tolerance in C. elegans and budding yeast.

    No full text
    Many organisms, including species from all kingdoms of life, can survive desiccation by entering a state with no detectable metabolism. To survive, C. elegans dauer larvae and stationary phase S. cerevisiae require elevated amounts of the disaccharide trehalose. We found that that dauer larvae and stationary phase yeast switched into a gluconeogenic mode in which metabolism was reoriented toward production of sugars from non-carbohydrate sources. This mode depended on full activity of the glyoxylate shunt (GS), which enables synthesis of trehalose from acetate. The GS was especially critical during preparation of worms for harsh desiccation (preconditioning) and during the entry of yeast into stationary phase. Loss of the GS dramatically decreased desiccation tolerance in both organisms. Our results reveal a novel physiological role for the GS and elucidate a conserved metabolic rewiring that confers desiccation tolerance on organisms as diverse as worm and yeast

    Glycolate combats massive oxidative stress by restoring redox potential in Caenorhabditis elegans.

    No full text
    Upon exposure to excessive reactive oxygen species (ROS), organismal survival depends on the strength of the endogenous antioxidant defense barriers that prevent mitochondrial and cellular deterioration. Previously, we showed that glycolic acid can restore the mitochondrial membrane potential of C. elegans treated with paraquat, an oxidant that produces superoxide and other ROS species, including hydrogen peroxide. Here, we demonstrate that glycolate fully suppresses the deleterious effects of peroxide on mitochondrial activity and growth in worms. This endogenous compound acts by entering serine/glycine metabolism. In this way, conversion of glycolate into glycine and serine ameliorates the drastically decreased NADPH/NADP+ and GSH/GSSG ratios induced by H2O2 treatment. Our results reveal the central role of serine/glycine metabolism as a major provider of reducing equivalents to maintain cellular antioxidant systems and the fundamental function of glycolate as a natural antioxidant that improves cell fitness and survival

    C. elegans possess a general program to enter cryptobiosis that allows dauer larvae to survive different kinds of abiotic stress.

    No full text
    All organisms encounter abiotic stress but only certain organisms are able to cope with extreme conditions and enter into cryptobiosis (hidden life). Previously, we have shown that C. elegans dauer larvae can survive severe desiccation (anhydrobiosis), a specific form of cryptobiosis. Entry into anhydrobiosis is preceded by activation of a set of biochemical pathways by exposure to mild desiccation. This process called preconditioning induces elevation of trehalose, intrinsically disordered proteins, polyamines and some other pathways that allow the preservation of cellular functionality in the absence of water. Here, we demonstrate that another stress factor, high osmolarity, activates similar biochemical pathways. The larvae that acquired resistance to high osmotic pressure can also withstand desiccation. In addition, high osmolarity significantly increases the biosynthesis of glycerol making larva tolerant to freezing. Thus, to survive abiotic stress, C. elegans activates a combination of genetic and biochemical pathways that serve as a general survival program
    corecore