9 research outputs found

    Исследование теплообмена в продуваемых непроходных каналах теплотрасс. Часть 1

    Get PDF
    Abstract. To increase the efficiency of operation of heating networks located in non-passable channels, a schematic and structural solution of regenerative-utilization heat use was previously proposed and at the same time it is shown that it isdifficult to create an acceptable full-scale experimental installation or the difficulty of conducting a passive experiment on existing heating mains in non-passable channels. As an alternative solution for performing research, it is proposed to create and use a virtual experimental setup developed on the basis of the ANSYS software package, which has received wide recognition in the world. The initial results of  model verification showed that the study of heat transfer and aerodynamics in blown-through non-passable heating mains using such a solution is promising. A study has been carried out using a virtual experimental setup based on a six-factor second-order rotatble plan containing 46 points on a hypersphere with six star points. It is shown that there is no need to randomize the order of conducting and repeating the study at the points of computational experiment plan. Second-order regression equations have obtained for calculating a complex of objective functions: the required air pressure to achieve a given flow rate, the intensity of heat transfer directly from the pipes of the heating main, as well as from the walls of the channel to the blown air. The geometry of the channels of typical standard sizes of heating mains, the length of the sections, the temperature of the outside air and soil, and the air flow rate in the channel have been taken as the influencing factors in the calculations.  For the obtained regression equations, significant coefficients have been established and the transition from dimensionless to natural factors has been carried out. The adequacy of the obtained regression equations has been determined using standard statistical estimation methods based on the calculated values of the Fisher’s, Student’s and other criteria. Для повышения эффективности эксплуатации тепловых сетей, размещенных в непроходных каналах, ранее предложено схемно-структурное решение регенеративно-утилизационного теплоиспользования и одновременно показана проблематичность создания приемлемой натурной экспериментальной установки или сложность проведения пассивного эксперимента на существующих теплотрассах в непроходных каналах. В качестве альтернативного решения для выполнения исследований предлагается создать и использовать виртуальную экспериментальную установку, разработанную на базе программного комплекса ANSYS, получившего широкое признание в мире. Начальные результаты верификации модели показали перспективность изучения теплообмена и аэродинамики в продуваемых непроходных каналах теплотрасс с использованием такого решения. Выполнено исследование с помощью виртуальной экспериментальной установки на базе шестифакторного ротатабельного плана второго порядка, содержащего 46 точек на гипершаре с шестью звездными точками. Показано отсутствие необходимости рандомизации порядка проведения и повторения исследования в точках плана проведения вычислительного эксперимента. Получены уравнения регрессии второго порядка для расчета комплекса целевых функций: требуемого напора воздуха для достижения заданной скорости потока, интенсивности теплоотдачи непосредственно от труб теплотрассы, а также от стенок канала к продуваемому воздуху. В качестве влияющих факторов при вычислениях приняты: геометрия каналов типовых размеров теплотрасс, длина участков, температуры наружного воздуха и грунта, скорость потока воздуха в канале. Для полученных уравнений регрессии установлены значимые коэффициенты и осуществлен переход от безразмерных факторов к натуральным. С использованием стандартных статистических методов оценок на базе рассчитанных значений критериев Фишера, Стьюдента и других определена адекватность полученных уравнений регрессии

    Оценка термодинамической эффективности Объединенной энергетической системы Беларуси. Часть1

    Get PDF
    The energy system is one of the foundations of a modern state, so, the need for its successful development and functioning is beyond doubt. In this regard, an objective assessment based on a set of indicators (viz. economic, energy and thermodynamic) is relevant. However, the traditional assessment of the operation of the energy system is carried out on the basis of such characteristics as the specific consumption of conventional fuel for electricity generation and heat release, which does not provide a comprehensive picture and is not always applied correctly. In this article, for the first time on the basis of the exergetic method, the calculation of the exergetic efficiency is considered. The use of this indicator makes it possible to obtain an objective assessment of the thermodynamic efficiency of such a complex formation as the energy system of a modern country in the easiest way. As an example, the unified energy system of Belarus in general and condensing power plants in particular have been analyzed for a fairly long period (2000–2021) and in various characteristic time periods. The method of calculating the exergetic efficiency is described. The results obtained are presented graphically. Attention is paid to the issue of the acceptability of the error when generalizing data on the initial flows of primary energy resources and product flows of centralized generating sources of the energy system. The contribution of condensing power plants to the total volume of electricity generation is analyzed, the most advanced of them are determined from a thermodynamic point of view. The calculation of their energy and exergetic indicators was carried out; the changes associated with the commissioning of the Belarusian NPP were considered. The conclusion is made that further reconstruction of energy sources of the power system in order to reduce the relative weight of natural gas in the incoming part of the energy balance to 50 % is expedient. This can be achieved by increasing the thermodynamic efficiency.Энергосистема – одна из основ современного государства, и необходимость ее успешного развития и функционирования не подлежит сомнению. В этой связи актуален ее объективный анализ на базе комплекса показателей: экономических, энергетических и термодинамических. Вместе с тем традиционная оценка работы энергосистемы осуществляется на основе таких характеристик, как удельный расход условного топлива на выработку электроэнергии и отпуск тепловой энергии, что не дает полной картины и не всегда применяется корректно. В настоящей статье впервые на базе эксергетического метода рассматривается расчет эксергетического коэффициента полезного действия. Данный показатель позволяет наиболее простым способом получить объективную оценку термодинамической эффективности такого сложного формирования, как энергосистема современной страны. В качестве примера проанализированы Объединенная энергетическая система Беларуси в целом и конденсационные электростанции в частности за достаточно продолжительный срок (2000–2021) и в различные характерные периоды времени. Описана методика расчета эксергетического коэффициента полезного действия. Полученные результаты представлены в графическом виде. Уделено внимание вопросу приемлемости погрешности при обобщении данных об исходных потоках первичных энергоресурсов и продуктовых потоках централизованных генерирующих источников энергосистемы. Проанализирован вклад конденсационных электростанций в общий объем генерации электроэнергии, определены наиболее совершенные из них с термодинамической точки зрения. Проведен расчет их энергетических и эксергетических показателей, рассмотрены изменения, связанные с вводом Белорусской АЭС. Делается вывод о целесообразности дальнейшей реконструкции энергоисточников энергосистемы с целью снижения относительного веса природного газа в приходной части энергобаланса до 50 %. Достичь этого можно путем повышения термодинамической эффективности

    К ВОПРОСУ РАЗВИТИЯ ЭНЕРГООБЕСПЕЧЕНИЯ ПРОМЫШЛЕННЫХ ТЕПЛОТЕХНОЛОГИЙ И СИСТЕМ ТЕПЛОСНАБЖЕНИЯ В БЕЛАРУСИ

    Get PDF
    Considers the current key energy problem – the rational and efficient use of energy resources, and the possibility of its solution, based on the concept of intensive energy conservation. As a result, the way of primary energy consumption reduction in Belarus is provided. The initial situation in the frame of program of further improvement of energy consumption until 2030 is estimated. It is shown, that for Belarus the first place in energy saving measures takes the efficiency improvement of natural gas consumption, what allows reducing the investment and saving energy resources.The possibility of usage of waste energy flows of medium-and low-temperature from industrial and municipal enterprises are discussed. To realize the described possibilities, some changes of heat supply system of enterprises and plants are required. Changes in heat supply system of the industrial enterprises, related with usage of low-temperature waste energy flows in a thermal energy generation process for heating, require the installation of additional equipment in existing heat energy supply system, such as absorption heat pumps, which are easily joint and successfully work at boiler Houses as well as at CHP. The numerous examples of fuel consumption reduction via heat industrial waste and sewage usage are shown in this article. It must be emphasized, that such an expansion of energy-saving framework not only reduce the primary energy consumption by heat generating sources, but also significantly improves the conditions of the Belarusian electrical grid operation under the conditions of nuclear power plant commissioning. The existing technical framework, that ensured the proposed changes, is also taking into account.Рассматриваются ключевая энергетическая проблема современности - рациональное и эффективное использование энергоресурсов – и возможность ее решения на базе концепции интенсивного энергосбережения. Выделяется один из путей решения задачи снижения потребления первичных энергоресурсов в Беларуси. Анализируется исходное состояние на пути дальнейшего совершенствования энергопотребления, который необходимо пройти до 2030 г. Для Беларуси показана ведущая роль в энергосбережении мероприятий по повышению эффективности потребления природного газа.Выносится на обсуждение возможность использования побочных энергопотоков промышленных предприятий средне- и низкотемпературных, коммунальных и промышленных канализационных стоков, что ставит задачу перехода к принципиально новой системе теплоснабжения предприятий и городов, использующей побочные тепловые потоки, в том числе и низкотемпературные тепловые потоки промышленных предприятий, коммунального хозяйства, рассеиваемые в настоящее время в окружающей среде. Затрагиваются системные изменения, связанные с вовлечением побочных низкотемпературных тепловых потоков в процесс генерации тепловой энергии для систем отопления и горячего водоснабжения при использовании для этого абсорбционных бромисто-литиевых тепловых насосов, сопрягаемых как с котельными, так и с ТЭЦ. Приведены многочисленные примеры возможного использования тепловых промышленных выбросов и канализационных стоков для снижения расхода топлива при генерации тепловой энергии для систем отопления и горячего водоснабжения.  Показано, что подобное расширение энергосберегающей базы не только обеспечивает снижение потребления  первичного энергоресурса теплогенерирующими источниками, но и существенно улучшает условия для работы энергосистемы Беларуси в части регулирования мощности и загрузки мощностей с вводом в строй АЭС. Рассматривается существующая техническая база, обеспечивающая предлагаемые изменения

    Numerical Study of Complex Heat Transfer in Blown Impassable Channels of Heating Mains

    Get PDF
    To solve the problem of increasing the efficiency of operation of thermal networks, placed in impassable channels, the authors previously proposed the scheme-and-structural decision of the regenerative-utilization heat consumption. The technology of forced ventilation of the channel by external followed by the cooling of air and utilization of the withdrawn heat is presented. Research of processes of heat exchange between a stream of air and pipelines of network water on the one hand and between a stream of air and walls of the channel on another hand is a determinant for realization of the presented technology of increase of efficiency of operation of the considered heating mains. Convective heat transfer with the listed components of the channel structure is quite difficult to reduce to any canonical form which makes it possible to use the available design dependences. It is immeasurably more difficult to find a solution when considering the processes of forced convection jointly. Heat exchange takes place in a channel of complex shape that is determined by the presence of supports, compensators and turns along the length of the channel. In the cross section, the sizes of the structure and the restriction of the air flow are determined by a standard size range of diameters of the network water pipelines. Under these conditions, the use of any real experimental facility is associated with unacceptable idealization and the corresponding error, unsuitable for practical use. Full-scale tests can be considered only to verify the adequacy of the experimental results. The way out of this situation can be a usage of a virtual experimental facility created on the basis of a standard software package (in the case under consideration the ANSYS was used). The approaches of creating a virtual experimental facility for the study of heat transfer and aerodynamics in the blown impassable channels of heating mains and methods of conducting experiment using the theory of its planning are considered

    Численное исследование сложного теплообмена в продуваемых непроходных каналах теплотрасс

    Get PDF
    To solve the problem of increasing the efficiency of operation of thermal networks, placed in impassable channels, the authors previously proposed the scheme-and-structural decision of the regenerative-utilization heat consumption. The technology of forced ventilation of the channel by external followed by the cooling of air and utilization of the withdrawn heat is presented. Research of processes of heat exchange between a stream of air and pipelines of network water on the one hand and between a stream of air and walls of the channel on another hand is a determinant for realization of the presented technology of increase of efficiency of operation of the considered heating mains. Convective heat transfer with the listed components of the channel structure is quite difficult to reduce to any canonical form which makes it possible to use the available design dependences. It is immeasurably more difficult to find a solution when considering the processes of forced convection jointly. Heat exchange takes place in a channel of complex shape that is determined by the presence of supports, compensators and turns along the length of the channel. In the cross section, the sizes of the structure and the restriction of the air flow are determined by a standard size range of diameters of the network water pipelines. Under these conditions, the use of any real experimental facility is associated with unacceptable idealization and the corresponding error, unsuitable for practical use. Full-scale tests can be considered only to verify the adequacy of the experimental results. The way out of this situation can be a usage of a virtual experimental facility created on the basis of a standard software package (in the case under consideration the ANSYS was used). The approaches of creating a virtual experimental facility for the study of heat transfer and aerodynamics in the blown impassable channels of heating mains and methods of conducting experiment using the theory of its planning are considered.Для решения задачи повышения эффективности эксплуатации тепловых сетей, размещенных в непроходных каналах, ранее авторами предлагалось схемно-структурное решение регенеративно-утилизационного теплоиспользования. Представлена принудительная вентиляция канала наружным воздухом с последующим охлаждением воздуха и утилизацией отводимой теплоты. Определяющим для реализации данной технологии повышения эффективности эксплуатации рассматриваемых теплопроводов является исследование процессов теплообмена между потоком воздуха и трубопроводами сетевой воды, с одной стороны, и между потоком воздуха и стенками канала, с другой. Конвективный теплообмен с перечисленными составляющими конструкции канала достаточно сложно привести к той или иной канонической форме, позволяющей использовать имеющиеся расчетные зависимости. Несоизмеримо сложнее найти решение при совместном рассмотрении протекающих процессов вынужденной конвекции. Теплообмен протекает в канале сложной формы, определяемой по длине канала наличием опор, компенсаторов и поворотов. В поперечном сечении размеры конструкции и стеснение потока воздуха определяются типоразмерным рядом диаметров трубопроводов сетевой воды. В этих условиях использование какой-либо реальной экспериментальной установки связано с неприемлемой идеализацией и соответствующей погрешностью, непригодной для практического применения. Натурные испытания могут рассматриваться только для проверки адекватности экспериментальных результатов. Выходом из этой ситуации может стать обращение к виртуальной экспериментальной установке, создаваемой на базе стандартного программного комплекса (в данном случае используется ANSYS). Рассмотрены подходы к созданию виртуальной экспериментальной установки для исследования теплообмена и аэродинамики в продуваемых непроходных каналах теплотрасс и методики проведения эксперимента с применением теории его планирования

    TO THE SUBJECT OF DEVELOPMENT OF POWER SUPPLY PROCESS FOR INDUSTRIAL HEAT TECHNOLOGIES AND HEAT SUPPLY SYSTEMS IN BELARUS

    No full text
    Considers the current key energy problem – the rational and efficient use of energy resources, and the possibility of its solution, based on the concept of intensive energy conservation. As a result, the way of primary energy consumption reduction in Belarus is provided. The initial situation in the frame of program of further improvement of energy consumption until 2030 is estimated. It is shown, that for Belarus the first place in energy saving measures takes the efficiency improvement of natural gas consumption, what allows reducing the investment and saving energy resources.The possibility of usage of waste energy flows of medium-and low-temperature from industrial and municipal enterprises are discussed. To realize the described possibilities, some changes of heat supply system of enterprises and plants are required. Changes in heat supply system of the industrial enterprises, related with usage of low-temperature waste energy flows in a thermal energy generation process for heating, require the installation of additional equipment in existing heat energy supply system, such as absorption heat pumps, which are easily joint and successfully work at boiler Houses as well as at CHP. The numerous examples of fuel consumption reduction via heat industrial waste and sewage usage are shown in this article. It must be emphasized, that such an expansion of energy-saving framework not only reduce the primary energy consumption by heat generating sources, but also significantly improves the conditions of the Belarusian electrical grid operation under the conditions of nuclear power plant commissioning. The existing technical framework, that ensured the proposed changes, is also taking into account
    corecore