17,114 research outputs found
Cancer detection in primary care: Insights from general practitioners
© 2015 Cancer Research UK. Background: General practitioners (GPs) have a key role in cancer detection as the usual first point of contact for patients with potential cancer symptoms. Nevertheless, there is limited work that investigates their perceptions of their role in the early detection of cancer. To address this gap, we aimed to gain an in-depth understanding of cancer diagnosis from the perspective of GPs. Methods: Individual face-to-face semi-structured interviews were conducted with 55 GPs from the North and North East of England and Greater London. All interviews were recorded and professionally transcribed verbatim. Repeated reading and co-coding engendered systematic thematic analysis across the interview material. Results: Three main themes emerged from the analysis of our data. First, we identified the burden of early cancer detection in general practice, both related to the anxiety and symptoms patients bring to GPs and the need for GPs to recognise patterns of cancer symptoms and refer appropriately; second, this burden is intensified by a perceived fragmentation of services within the National Health Service (NHS); and third, it is made more complex by the interface between general practice and public health. Conclusions: GPs occupy a challenging but pivotal role in cancer detection. It is crucial that this role be supported by policy and research
Using cultural probes to inform the design of assistive technologies
This paper discusses the practical implications of applying cultural probes to drive the design of assistive technologies. Specifically we describe a study in which a probe was deployed with home-based carers of people with dementia in order to capture critical data and gain insights of integrating the technologies into this sensitive and socially complex design space. To represent and utilise the insights gained from the cultural probes, we created narratives based on the probe data to enhance the design of assistive technologies.This work was supported by the Arts and Humanities Research Council (AH/K00266X/1) and RCUK through the Horizon Digital Economy Research grant (EP/G065802/1)
First-Order Provenance Games
We propose a new model of provenance, based on a game-theoretic approach to
query evaluation. First, we study games G in their own right, and ask how to
explain that a position x in G is won, lost, or drawn. The resulting notion of
game provenance is closely related to winning strategies, and excludes from
provenance all "bad moves", i.e., those which unnecessarily allow the opponent
to improve the outcome of a play. In this way, the value of a position is
determined by its game provenance. We then define provenance games by viewing
the evaluation of a first-order query as a game between two players who argue
whether a tuple is in the query answer. For RA+ queries, we show that game
provenance is equivalent to the most general semiring of provenance polynomials
N[X]. Variants of our game yield other known semirings. However, unlike
semiring provenance, game provenance also provides a "built-in" way to handle
negation and thus to answer why-not questions: In (provenance) games, the
reason why x is not won, is the same as why x is lost or drawn (the latter is
possible for games with draws). Since first-order provenance games are
draw-free, they yield a new provenance model that combines how- and why-not
provenance
DDF and Pohlmeyer invariants of (super)string
We show how the Pohlmeyer invariants of the bosonic string are expressible in
terms of DDF invariants. Quantization of the DDF observables in the usual way
yields a consistent quantization of the algebra of Pohlmeyer invariants.
Furthermore it becomes straightforward to generalize the Pohlmeyer invariants
to the superstring as well as to all backgrounds which allow a free field
realization of the worldsheet theory.Comment: 17 pp, minor typos corrected, references to papers by Isaev and
Borodulin added, which contain essentially the same results as reported her
Remarks on the Classical Size of D-Branes
We discuss different criteria for `classical size' of extremal Dirichlet
p-branes in type-II supergravity. Using strong-weak coupling duality, we find
that the size of the strong-coupling region at the core of the (p<3)-branes, is
always given by the asymptotic string scale, if measured in the weakly coupled
dual string metric. We also point out how the eleven-dimensional Planck scale
arises in the classical 0-brane solution, as well as the ten-dimensional Planck
scale in the D-instanton solution.Comment: 8 pp, harvma
Three-Nucleon Force and the -Mechanism for Pion Production and Pion Absorption
The description of the three-nucleon system in terms of nucleon and
degrees of freedom is extended to allow for explicit pion production
(absorption) from single dynamic de-excitation (excitation) processes.
This mechanism yields an energy dependent effective three-body hamiltonean. The
Faddeev equations for the trinucleon bound state are solved with a force model
that has already been tested in the two-nucleon system above pion-production
threshold. The binding energy and other bound state properties are calculated.
The contribution to the effective three-nucleon force arising from the pionic
degrees of freedom is evaluated. The validity of previous coupled-channel
calculations with explicit but stable isobar components in the
wavefunction is studied.Comment: 23 pages in Revtex 3.0, 9 figures (not included, available as
postscript files upon request), CEBAF-TH-93-0
Perturbative dynamics of matrix string for the membrane
Recently Sekino and Yoneya proposed a way to regularize the world volume
theory of membranes wrapped around by matrices and showed that one
obtains matrix string theory as a regularization of such a theory. We show that
this correspondence between matrix string theory and wrapped membranes can be
obtained by using the usual M(atrix) theory techniques. Using this
correspondence, we construct the super-Poincare generators of matrix string
theory at the leading order in the perturbation theory. It is shown that these
generators satisfy 10 dimensional super-Poincar\'e algebra without any anomaly.Comment: 23 pages, 1 figur
First Attempt at Spectroscopic Detection of Gravity Modes in a Long-Period Pulsating Subdwarf B Star -- PG 1627+017
In the first spectroscopic campaign for a PG 1716 variable (or long-period
pulsating subdwarf B star), we succeeded in detecting velocity variations due
to g-mode pulsations at a level of 1.0-1.5 km/s.The observations were obtained
during 40 nights on 2-m class telescopes in Arizona, South Africa,and
Australia. The target,PG1627+017, is one of the brightest and largest amplitude
stars in its class.It is also the visible component of a post-common envelope
binary.Our final radial velocity data set includes 84 hours of time-series
spectroscopy over a time baseline of 53 days. Our derived radial velocity
amplitude spectrum, after subtracting the orbital motion, shows three potential
pulsational modes 3-4 sigma above the mean noise level, at 7201.0s,7014.6s and
7037.3s.Only one of the features is statistically likely to be real,but all
three are tantalizingly close to, or a one day alias of, the three strongest
periodicities found in the concurrent photometric campaign. We further
attempted to detect pulsational variations in the Balmer line amplitudes. The
single detected periodicity of 7209 s, although weak, is consistent with
theoretical expectations as a function of wavelength.Furthermore, it allows us
to rule out a degree index of l= 3 or l= 5 for that mode. Given the extreme
weakness of g-mode pulsations in these stars,we conclude that anything beyond
simply detecting their presence will require larger telescopes,higher
efficiency spectral monitoring over longer time baselines,improved longitude
coverage, and increased radial velocity precision.Comment: 39 pages, 9 figures, 4 tables, ApJ accepted. See postscript for full
abtrac
Electromagnetic transitions of the helium atom in superstrong magnetic fields
We investigate the electromagnetic transition probabilities for the helium
atom embedded in a superstrong magnetic field taking into account the finite
nuclear mass. We address the regime \gamma=100-10000 a.u. studying several
excited states for each symmetry, i.e. for the magnetic quantum numbers
0,-1,-2,-3, positive and negative z parity and singlet and triplet symmetry.
The oscillator strengths as a function of the magnetic field, and in particular
the influence of the finite nuclear mass on the oscillator strengths are shown
and analyzed.Comment: 10 pages, 8 figure
Ricci Collineations of the Bianchi Type II, VIII, and IX Space-times
Ricci and contracted Ricci collineations of the Bianchi type II, VIII, and IX
space-times, associated with the vector fields of the form (i) one component of
is different from zero and (ii) two components of are
different from zero, for , are presented. In subcase (i.b), which
is , some known solutions are found, and in subcase
(i.d), which is , choosing ,
the Bianchi type II, VIII, and IX space-times is reduced to the
Robertson-Walker metric.Comment: 12 Pages, LaTeX, 1 Table, no figure
- …