In the first spectroscopic campaign for a PG 1716 variable (or long-period
pulsating subdwarf B star), we succeeded in detecting velocity variations due
to g-mode pulsations at a level of 1.0-1.5 km/s.The observations were obtained
during 40 nights on 2-m class telescopes in Arizona, South Africa,and
Australia. The target,PG1627+017, is one of the brightest and largest amplitude
stars in its class.It is also the visible component of a post-common envelope
binary.Our final radial velocity data set includes 84 hours of time-series
spectroscopy over a time baseline of 53 days. Our derived radial velocity
amplitude spectrum, after subtracting the orbital motion, shows three potential
pulsational modes 3-4 sigma above the mean noise level, at 7201.0s,7014.6s and
7037.3s.Only one of the features is statistically likely to be real,but all
three are tantalizingly close to, or a one day alias of, the three strongest
periodicities found in the concurrent photometric campaign. We further
attempted to detect pulsational variations in the Balmer line amplitudes. The
single detected periodicity of 7209 s, although weak, is consistent with
theoretical expectations as a function of wavelength.Furthermore, it allows us
to rule out a degree index of l= 3 or l= 5 for that mode. Given the extreme
weakness of g-mode pulsations in these stars,we conclude that anything beyond
simply detecting their presence will require larger telescopes,higher
efficiency spectral monitoring over longer time baselines,improved longitude
coverage, and increased radial velocity precision.Comment: 39 pages, 9 figures, 4 tables, ApJ accepted. See postscript for full
abtrac